Spaces:
Sleeping
Sleeping
File size: 6,405 Bytes
86f4b94 8d22a2e 86f4b94 8d22a2e 86f4b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import gradio as gr
import random
from transformers import AutoTokenizer
from huggingface_hub import login, logout
from markupsafe import escape
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from fractions import Fraction
def random_light_color():
"""Generates a random light color with black text."""
return f"hsl({random.randint(0, 360)}, 100%, 80%)"
def utf8_tokens(tokens):
"""Generates UTF-8 token representations with valid Unicode for each token."""
utf8_representation = []
for token in tokens:
try:
utf8_bytes = token.encode('utf-8')
utf8_hex = " ".join([f"<0x{byte:02X}>" for byte in utf8_bytes])
unicode_token = utf8_bytes.decode('utf-8')
utf8_representation.append(
f'<span style="background-color:{random_light_color()}; color: black;">{escape(unicode_token)} {utf8_hex}</span>'
)
except UnicodeDecodeError:
utf8_representation.append(
f'<span style="background-color:{random_light_color()}; color: brown;">{escape(token)} {utf8_hex}</span>'
)
return " ".join(utf8_representation)
def tokenize_text(tokenizer_name_1, tokenizer_name_2, text, hf_token=None):
def tokenize_with_model(tokenizer_name):
try:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=hf_token)
tokens = tokenizer.tokenize(text)
word_count = len(text.split())
token_count = len(tokens)
ratio_simplified = f"{Fraction(word_count, token_count).numerator}/{Fraction(word_count, token_count).denominator}" if token_count > 0 else "N/A"
colored_tokens = [
f'<span style="background-color:{random_light_color()}; color: black;">{escape(token)}</span>' for token in tokens
]
tokenized_text = " ".join(colored_tokens)
utf8_representation = utf8_tokens(tokens)
return tokenized_text, token_count, word_count, ratio_simplified, utf8_representation
except Exception as e:
return f"Error loading tokenizer {tokenizer_name}: {str(e)}", 0, 0, "N/A", ""
if hf_token:
login(hf_token)
tokenizer_1_output = tokenize_with_model(tokenizer_name_1)
tokenizer_2_output = tokenize_with_model(tokenizer_name_2)
if hf_token:
logout()
return (
f"<p><strong>Tokenizer 1:</strong><br>{tokenizer_1_output[0]}</p>",
f"Tokenizer 1 - Total tokens: {tokenizer_1_output[1]}, Total words: {tokenizer_1_output[2]}, Word/Token ratio: {tokenizer_1_output[3]}",
f"<p>{tokenizer_1_output[4]}</p>",
f"<p><strong>Tokenizer 2:</strong><br>{tokenizer_2_output[0]}</p>",
f"Tokenizer 2 - Total tokens: {tokenizer_2_output[1]}, Total words: {tokenizer_2_output[2]}, Word/Token ratio: {tokenizer_2_output[3]}",
f"<p>{tokenizer_2_output[4]}</p>"
)
def fill_example_text(example_text):
"""Fills the textbox with the selected example."""
return example_text
examples = {
"Example 1 (en)": "Hugging Face's tokenizers are really cool!",
"Example 2 (en)": "Gradio makes building UIs so easy and intuitive.",
"Example 3 (en)": "Machine learning models often require extensive training data.",
"Example 4 (ta)": "விரைவு பழுப்பு நரி சோம்பேறி நாய் மீது குதிக்கிறது",
"Example 5 (si)": "ඉක්මන් දුඹුරු නරියා කම්මැලි බල්ලා උඩින් පනියි"
}
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
tokenizer_search_1 = HuggingfaceHubSearch(
label="Search Huggingface Hub for Tokenizer 1",
placeholder="Search for Tokenizer 1",
search_type="model"
)
with gr.Column():
tokenizer_search_2 = HuggingfaceHubSearch(
label="Search Huggingface Hub for Tokenizer 2",
placeholder="Search for Tokenizer 2",
search_type="model"
)
example_dropdown = gr.Dropdown(label="Select Example", choices=list(examples.keys()), value="Example 1")
input_text = gr.Textbox(label="Input Text", lines=5)
with gr.Accordion("Hugging Face Token (Optional)", open=False):
hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Enter HF token if needed for private tokenizers")
with gr.Row():
with gr.Column():
gr.Markdown("### Tokenizer 1 Outputs")
tokenized_output_1 = gr.HTML(label="Tokenizer 1 - Tokenized Text")
token_count_label_1 = gr.Label(label="Tokenizer 1 - Token Count and Word Count")
with gr.Accordion("Tokenizer 1 - UTF-8 Decoded Text", open=False):
utf8_output_1 = gr.HTML(label="Tokenizer 1 - UTF-8 Decoded Text")
with gr.Column():
gr.Markdown("### Tokenizer 2 Outputs")
tokenized_output_2 = gr.HTML(label="Tokenizer 2 - Tokenized Text")
token_count_label_2 = gr.Label(label="Tokenizer 2 - Token Count and Word Count")
with gr.Accordion("Tokenizer 2 - UTF-8 Decoded Text", open=False):
utf8_output_2 = gr.HTML(label="Tokenizer 2 - UTF-8 Decoded Text")
example_dropdown.change(fn=lambda x: fill_example_text(examples[x]), inputs=example_dropdown, outputs=input_text)
input_text.change(tokenize_text,
inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token],
outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2])
tokenizer_search_1.change(tokenize_text,
inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token],
outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2])
tokenizer_search_2.change(tokenize_text,
inputs=[tokenizer_search_1, tokenizer_search_2, input_text, hf_token],
outputs=[tokenized_output_1, token_count_label_1, utf8_output_1, tokenized_output_2, token_count_label_2, utf8_output_2])
demo.launch()
|