Sujatha commited on
Commit
a720b40
·
verified ·
1 Parent(s): d5229e8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -6
app.py CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
2
  import numpy as np
3
  import pandas as pd
4
  from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN, Birch, MeanShift
5
- from sklearn_extra.cluster import KMedoids
6
  from sklearn.mixture import GaussianMixture
7
  from sklearn.decomposition import PCA
8
  from scipy.cluster.hierarchy import linkage, dendrogram
@@ -23,9 +22,6 @@ def apply_clustering(algorithm, n_clusters, dataset):
23
  if algorithm == "KMeans":
24
  model = KMeans(n_clusters=n_clusters, random_state=42)
25
  labels = model.fit_predict(data_matrix)
26
- elif algorithm == "KMedoid (PAM)":
27
- model = KMedoids(n_clusters=n_clusters, method='pam', random_state=42)
28
- labels = model.fit_predict(data_matrix)
29
  elif algorithm == "Fuzzy C-Means (FCM)":
30
  # Use skfuzzy for Fuzzy C-Means
31
  cntr, u, _, _, _, _, _ = fuzz.cmeans(data_matrix.T, n_clusters, 2, error=0.005, maxiter=1000)
@@ -84,7 +80,6 @@ def main_interface():
84
  algorithm = gr.Dropdown(
85
  choices=[
86
  "KMeans",
87
- "KMedoid (PAM)",
88
  "Fuzzy C-Means (FCM)",
89
  "Agglomerative Hierarchical Clustering (AHC)",
90
  "BIRCH",
@@ -104,8 +99,11 @@ def main_interface():
104
  fn=apply_clustering,
105
  inputs=[algorithm, n_clusters, dataset],
106
  outputs=[output_text, output_image]
107
- ).launch(debug=True)
108
 
109
  # Run the application
110
  if __name__ == "__main__":
111
  main_interface()
 
 
 
 
2
  import numpy as np
3
  import pandas as pd
4
  from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN, Birch, MeanShift
 
5
  from sklearn.mixture import GaussianMixture
6
  from sklearn.decomposition import PCA
7
  from scipy.cluster.hierarchy import linkage, dendrogram
 
22
  if algorithm == "KMeans":
23
  model = KMeans(n_clusters=n_clusters, random_state=42)
24
  labels = model.fit_predict(data_matrix)
 
 
 
25
  elif algorithm == "Fuzzy C-Means (FCM)":
26
  # Use skfuzzy for Fuzzy C-Means
27
  cntr, u, _, _, _, _, _ = fuzz.cmeans(data_matrix.T, n_clusters, 2, error=0.005, maxiter=1000)
 
80
  algorithm = gr.Dropdown(
81
  choices=[
82
  "KMeans",
 
83
  "Fuzzy C-Means (FCM)",
84
  "Agglomerative Hierarchical Clustering (AHC)",
85
  "BIRCH",
 
99
  fn=apply_clustering,
100
  inputs=[algorithm, n_clusters, dataset],
101
  outputs=[output_text, output_image]
102
+ ).launch()
103
 
104
  # Run the application
105
  if __name__ == "__main__":
106
  main_interface()
107
+
108
+
109
+