Spaces:
Runtime error
Runtime error
# Import necessary libraries | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
# Convert PDF to DataFrame (assuming it's already loaded as df in CSV or DataFrame format) | |
df = pd.read_csv('diabetes_prediction_dataset.csv') # Replace with the path to your CSV | |
df['label'] = (df['target_column'] > threshold_value).astype(int) # Adjust target column for binary classification | |
# Split the dataset | |
train_df, test_df = train_test_split(df, test_size=0.2) | |
train_df.to_csv("train.csv", index=False) | |
test_df.to_csv("test.csv", index=False) | |
# Load dataset with Hugging Face Datasets | |
dataset = load_dataset('csv', data_files={'train': 'train.csv', 'test': 'test.csv'}) | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | |
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) | |
# Tokenize the dataset | |
def preprocess_function(examples): | |
return tokenizer(examples['text_column'], padding="max_length", truncation=True) | |
tokenized_dataset = dataset.map(preprocess_function, batched=True) | |
# Set training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
evaluation_strategy="epoch", | |
per_device_train_batch_size=16, | |
per_device_eval_batch_size=16, | |
num_train_epochs=3, | |
weight_decay=0.01, | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset['train'], | |
eval_dataset=tokenized_dataset['test'], | |
) | |
# Train and evaluate | |
trainer.train() | |
trainer.evaluate() | |