Sujatha's picture
Update app.py
6575b06 verified
# Import necessary libraries
import pandas as pd
from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from sklearn.model_selection import train_test_split
# Load the dataset
file_path = 'diabetes_prediction_dataset.csv' # Ensure the dataset file is present in the same directory
df = pd.read_csv(file_path)
# Define the target column and create binary labels
target_column = 'hypertension' # Replace with your target column name
if target_column not in df.columns:
raise ValueError(f"Target column '{target_column}' not found in the dataset.")
threshold_value = 0
df['label'] = (df[target_column] > threshold_value).astype(int)
# Ensure necessary feature columns exist
feature_columns = ['age', 'bmi', 'HbA1c_level'] # Replace with your dataset's feature names
for col in feature_columns:
if col not in df.columns:
raise ValueError(f"Feature column '{col}' not found in the dataset.")
# Handle missing values (optional: drop or fill)
df = df.dropna(subset=feature_columns + [target_column])
# Split the dataset into train and test sets
train_df, test_df = train_test_split(df, test_size=0.2, random_state=42)
# Convert to Hugging Face Dataset
train_dataset = Dataset.from_pandas(train_df.reset_index(drop=True))
test_dataset = Dataset.from_pandas(test_df.reset_index(drop=True))
# Load the tokenizer and model
model_name = "bert-base-uncased" # Replace with a suitable model for your task
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
# Define a tokenization function
def preprocess_function(examples):
# Combine features into a single string representation
inputs = [
f"age: {age}, bmi: {bmi}, HbA1c: {hba1c}"
for age, bmi, hba1c in zip(examples["age"], examples["bmi"], examples["HbA1c_level"])
]
return tokenizer(inputs, padding="max_length", truncation=True, max_length=32)
# Apply the tokenization function
tokenized_train = train_dataset.map(preprocess_function, batched=True)
tokenized_test = test_dataset.map(preprocess_function, batched=True)
# Set up training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
save_strategy="epoch",
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
logging_dir='./logs',
logging_steps=10,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
)
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_train,
eval_dataset=tokenized_test,
tokenizer=tokenizer, # Ensure the tokenizer is passed
)
# Train the model
trainer.train()
# Evaluate the model
eval_results = trainer.evaluate()
print("Evaluation Results:", eval_results)