# Import necessary libraries import pandas as pd from datasets import Dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from sklearn.model_selection import train_test_split # Load the dataset df = pd.read_csv('diabetes_prediction_dataset.csv') # Ensure this file is uploaded to the root directory # Define the target column (e.g., 'hypertension') and create binary labels # Replace 'hypertension' with your actual target column if needed threshold_value = 0 df['label'] = (df['hypertension'] > threshold_value).astype(int) # Split the dataset into train and test sets train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) train_dataset = Dataset.from_pandas(train_df) test_dataset = Dataset.from_pandas(test_df) # Load the tokenizer and model from Hugging Face model_name = "bert-base-uncased" # You can replace this with another compatible model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Define a tokenization function def preprocess_function(examples): # Convert each feature to a string and concatenate them inputs = [f"{age} {bmi} {hba1c}" for age, bmi, hba1c in zip(examples["age"], examples["bmi"], examples["HbA1c_level"])] return tokenizer(inputs, padding="max_length", truncation=True, max_length=32) # Apply the tokenization function to the datasets tokenized_train = train_dataset.map(preprocess_function, batched=True) tokenized_test = test_dataset.map(preprocess_function, batched=True) # Set up training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_test, ) # Train and evaluate the model trainer.train() trainer.evaluate()