# Import necessary libraries import pandas as pd from datasets import load_dataset, Dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from sklearn.model_selection import train_test_split # Load the dataset # Make sure you have the correct path to the CSV file df = pd.read_csv('diabetes_data.csv') # Define target column and preprocess threshold_value = 0 # Set threshold if needed df['label'] = (df['hypertension'] > threshold_value).astype(int) # Binary classification based on hypertension # Split the dataset into train and test sets train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) train_dataset = Dataset.from_pandas(train_df) test_dataset = Dataset.from_pandas(test_df) # Load tokenizer and model model_name = "bert-base-uncased" # Replace with any compatible model from Hugging Face Model Hub tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Tokenization function def preprocess_function(examples): # Concatenate relevant columns to form the input text if needed inputs = examples["age"].astype(str) + " " + examples["bmi"].astype(str) + " " + examples["HbA1c_level"].astype(str) return tokenizer(inputs, padding="max_length", truncation=True, max_length=32) # Apply tokenization to the datasets tokenized_train = train_dataset.map(preprocess_function, batched=True) tokenized_test = test_dataset.map(preprocess_function, batched=True) # Set up Trainer with training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, ) # Initialize Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_test, ) # Train and evaluate trainer.train() trainer.evaluate()