# Import necessary libraries import pandas as pd from datasets import Dataset from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from sklearn.model_selection import train_test_split # Load the dataset file_path = 'diabetes_prediction_dataset.csv' # Ensure the dataset file is present in the same directory df = pd.read_csv(file_path) # Define the target column and create binary labels target_column = 'hypertension' # Replace with your target column name if target_column not in df.columns: raise ValueError(f"Target column '{target_column}' not found in the dataset.") threshold_value = 0 df['label'] = (df[target_column] > threshold_value).astype(int) # Ensure necessary feature columns exist feature_columns = ['age', 'bmi', 'HbA1c_level'] # Replace with your dataset's feature names for col in feature_columns: if col not in df.columns: raise ValueError(f"Feature column '{col}' not found in the dataset.") # Handle missing values (optional: drop or fill) df = df.dropna(subset=feature_columns + [target_column]) # Split the dataset into train and test sets train_df, test_df = train_test_split(df, test_size=0.2, random_state=42) # Convert to Hugging Face Dataset train_dataset = Dataset.from_pandas(train_df.reset_index(drop=True)) test_dataset = Dataset.from_pandas(test_df.reset_index(drop=True)) # Load the tokenizer and model model_name = "bert-base-uncased" # Replace with a suitable model for your task tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2) # Define a tokenization function def preprocess_function(examples): # Combine features into a single string representation inputs = [ f"age: {age}, bmi: {bmi}, HbA1c: {hba1c}" for age, bmi, hba1c in zip(examples["age"], examples["bmi"], examples["HbA1c_level"]) ] return tokenizer(inputs, padding="max_length", truncation=True, max_length=32) # Apply the tokenization function tokenized_train = train_dataset.map(preprocess_function, batched=True) tokenized_test = test_dataset.map(preprocess_function, batched=True) # Set up training arguments training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", save_strategy="epoch", per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, logging_dir='./logs', logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_train, eval_dataset=tokenized_test, tokenizer=tokenizer, # Ensure the tokenizer is passed ) # Train the model trainer.train() # Evaluate the model eval_results = trainer.evaluate() print("Evaluation Results:", eval_results)