acres / utils /pdf_processor.py
ak3ra's picture
added docling
e31c953
raw
history blame
8.34 kB
# utils/pdf_processor.py
"""
PDF processing module for ACRES RAG Platform.
Handles PDF file processing, text extraction, and page rendering.
"""
import datetime
import json
import logging
import os
import re
from typing import Dict, List, Optional
from llama_index.readers.docling import DoclingReader
import fitz
from PIL import Image
from slugify import slugify
logger = logging.getLogger(__name__)
reader = DoclingReader()
class PDFProcessor:
def __init__(self, upload_dir: str = "data/uploads"):
"""Initialize PDFProcessor with upload directory."""
self.upload_dir = upload_dir
os.makedirs(upload_dir, exist_ok=True)
self.current_page = 0
def is_references_page(self, text: str) -> bool:
"""
Check if the page appears to be a references/bibliography page.
"""
# Common section headers for references
ref_headers = [
r"^references\s*$",
r"^bibliography\s*$",
r"^works cited\s*$",
r"^citations\s*$",
r"^cited literature\s*$",
]
# Check first few lines of the page
first_lines = text.lower().split("\n")[:3]
first_block = " ".join(first_lines)
# Check for reference headers
for header in ref_headers:
if re.search(header, first_block, re.IGNORECASE):
return True
# Check for reference-like patterns (e.g., [1] Author, et al.)
ref_patterns = [
r"^\[\d+\]", # [1] style
r"^\d+\.", # 1. style
r"^[A-Z][a-z]+,\s+[A-Z]\.", # Author, I. style
]
ref_pattern_count = 0
lines = text.split("\n")[:10] # Check first 10 lines
for line in lines:
line = line.strip()
if any(re.match(pattern, line) for pattern in ref_patterns):
ref_pattern_count += 1
# If multiple reference-like patterns are found, likely a references page
return ref_pattern_count >= 3
def detect_references_start(self, doc: fitz.Document) -> Optional[int]:
"""
Detect the page where references section starts.
Returns the page number or None if not found.
"""
for page_num in range(len(doc)):
page = doc[page_num]
text = page.get_text()
if self.is_references_page(text):
logger.info(f"Detected references section starting at page {page_num}")
return page_num
return None
def process_pdfs(self, file_paths: List[str], collection_name: str) -> str:
"""Process multiple PDF files and store their content."""
processed_docs = []
for file_path in file_paths:
try:
doc_data = self.extract_text_from_pdf(file_path)
processed_docs.append(doc_data)
logger.info(
f"Successfully processed {file_path} ({doc_data['content_pages']} content pages)"
)
except Exception as e:
logger.error(f"Error processing {file_path}: {str(e)}")
continue
if not processed_docs:
raise ValueError("No documents were successfully processed")
# Save to JSON file
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"{slugify(collection_name)}_{timestamp}_documents.json"
output_path = os.path.join("data", output_filename)
# Ensure the data directory exists
os.makedirs("data", exist_ok=True)
with open(output_path, "w", encoding="utf-8") as f:
json.dump(processed_docs, f, indent=2, ensure_ascii=False)
logger.info(f"Saved processed documents to {output_path}")
return output_path
def extract_text_from_pdf(self, file_path: str) -> Dict:
"""
Extract text and metadata from a PDF file using DoclingReader.
Maintains accurate page numbers for source citation.
"""
try:
# Use DoclingReader for main content extraction
reader = DoclingReader()
documents = reader.load_data(file_path)
text = documents[0].text if documents else ""
# Use PyMuPDF to get accurate page count
doc = fitz.open(file_path)
total_pages = len(doc)
# Extract title from document
title = os.path.basename(file_path)
title_match = re.search(r'#+ (.+?)\n', text)
if title_match:
title = title_match.group(1).strip()
# Extract abstract
abstract = ""
abstract_match = re.search(r'Abstract:?(.*?)(?=\n\n|Keywords:|$)', text, re.DOTALL | re.IGNORECASE)
if abstract_match:
abstract = abstract_match.group(1).strip()
# Extract authors
authors = []
author_section = re.search(r'\n(.*?)\n.*?Department', text)
if author_section:
author_text = author_section.group(1)
authors = [a.strip() for a in author_text.split(',') if a.strip()]
# Remove references section
content = text
ref_patterns = [r'\nReferences\n', r'\nBibliography\n', r'\nWorks Cited\n']
for pattern in ref_patterns:
split_text = re.split(pattern, content, flags=re.IGNORECASE)
if len(split_text) > 1:
content = split_text[0]
break
# Map content to pages using PyMuPDF for accurate page numbers
pages = {}
for page_num in range(total_pages):
page = doc[page_num]
page_text = page.get_text()
# Skip if this appears to be a references page
if self.is_references_page(page_text):
logger.info(f"Skipping references page {page_num}")
continue
# Look for this page's content in the Docling-extracted text
# This is a heuristic approach - we look for unique phrases from the page
key_phrases = self._get_key_phrases(page_text)
page_content = self._find_matching_content(content, key_phrases)
if page_content:
pages[str(page_num)] = {
'text': page_content,
'page_number': page_num + 1 # 1-based page numbers for human readability
}
# Create structured document with page-aware content
document = {
"title": title,
"authors": authors,
"date": "", # Could be extracted if needed
"abstract": abstract,
"full_text": content,
"source_file": file_path,
"pages": pages,
"page_count": total_pages,
"content_pages": len(pages) # Number of non-reference pages
}
doc.close()
return document
except Exception as e:
logger.error(f"Error processing PDF {file_path}: {str(e)}")
raise
def _get_key_phrases(self, text: str, phrase_length: int = 10) -> List[str]:
"""Extract key phrases from text for matching."""
words = text.split()
phrases = []
for i in range(0, len(words), phrase_length):
phrase = ' '.join(words[i:i + phrase_length])
if len(phrase.strip()) > 20: # Only use substantial phrases
phrases.append(phrase)
return phrases
def _find_matching_content(self, docling_text: str, key_phrases: List[str]) -> Optional[str]:
"""Find the corresponding content in Docling text using key phrases."""
for phrase in key_phrases:
if phrase in docling_text:
# Find the paragraph or section containing this phrase
paragraphs = docling_text.split('\n\n')
for para in paragraphs:
if phrase in para:
return para
return None