import os from dotenv import load_dotenv import gradio as gr from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from sentence_transformers import SentenceTransformer load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Variable to store current chat conversation current_chat_history = [] def data_ingestion_from_directory(): # Use SimpleDirectoryReader on the directory containing the PDF files documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): chat_text_qa_msgs = [ ( "user", """ You are the Heart Disease Solutions chatbot. Your goal is to provide accurate, preventions, and helpful answers to user queries based on the heart data. Always ensure your responses are clear and concise. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response context_str = "" for past_query, response in reversed(current_chat_history): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, as per my current knowledge I am unable to answer this question. Is there anything else I can help you with?" # Remove sensitive information and unwanted sections from the response sensitive_keywords = [PERSIST_DIR, PDF_DIRECTORY, "/", "\\", ".pdf", ".doc", ".txt"] for keyword in sensitive_keywords: response = response.replace(keyword, "") # Remove sections starting with specific keywords unwanted_sections = ["Page Label","Page Label:","page_label","page_label:","file_path:","file_path",] for section in unwanted_sections: if section in response: response = response.split(section)[0] # Additional cleanup for any remaining artifacts from replacements response = ' '.join(response.split()) # Update current chat history current_chat_history.append((query, response)) return response # Example usage: Process PDF ingestion from directory print("Processing PDF ingestion from directory:", PDF_DIRECTORY) data_ingestion_from_directory() # Define the input and output components for the Gradio interface input_component = gr.Textbox( show_label=False, placeholder="Ask me anything about JackNJill Solutions..." ) output_component = gr.Textbox() # Function to handle queries def chatbot_handler(query): response = handle_query(query) return response # Create the Gradio interface interface = gr.Interface( fn=chatbot_handler, inputs=input_component, outputs=output_component, title="Welcome to Heart Disease Solutions", description="I am here to assist you with any questions you have about Disease Preventions. How can I help you today?" ) # Launch the Gradio interface interface.launch()