Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class IDEncoder(nn.Module): | |
def __init__(self, width=1280, context_dim=2048, num_token=5): | |
super().__init__() | |
self.num_token = num_token | |
self.context_dim = context_dim | |
h1 = min((context_dim * num_token) // 4, 1024) | |
h2 = min((context_dim * num_token) // 2, 1024) | |
self.body = nn.Sequential( | |
nn.Linear(width, h1), | |
nn.LayerNorm(h1), | |
nn.LeakyReLU(), | |
nn.Linear(h1, h2), | |
nn.LayerNorm(h2), | |
nn.LeakyReLU(), | |
nn.Linear(h2, context_dim * num_token), | |
) | |
for i in range(5): | |
setattr( | |
self, | |
f'mapping_{i}', | |
nn.Sequential( | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, context_dim), | |
), | |
) | |
setattr( | |
self, | |
f'mapping_patch_{i}', | |
nn.Sequential( | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, 1024), | |
nn.LayerNorm(1024), | |
nn.LeakyReLU(), | |
nn.Linear(1024, context_dim), | |
), | |
) | |
def forward(self, x, y): | |
# x shape [N, C] | |
x = self.body(x) | |
x = x.reshape(-1, self.num_token, self.context_dim) | |
hidden_states = () | |
for i, emb in enumerate(y): | |
hidden_state = getattr(self, f'mapping_{i}')(emb[:, :1]) + getattr(self, f'mapping_patch_{i}')( | |
emb[:, 1:] | |
).mean(dim=1, keepdim=True) | |
hidden_states += (hidden_state,) | |
hidden_states = torch.cat(hidden_states, dim=1) | |
return torch.cat([x, hidden_states], dim=1) |