Spaces:
Running
on
Zero
Running
on
Zero
import json | |
import logging | |
import os | |
import pathlib | |
import re | |
from copy import deepcopy | |
from pathlib import Path | |
from typing import Optional, Tuple, Union, Dict, Any | |
import torch | |
from .constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from .model import CLIP, CustomCLIP, convert_weights_to_lp, convert_to_custom_text_state_dict,\ | |
get_cast_dtype | |
from .openai import load_openai_model | |
from .pretrained import is_pretrained_cfg, get_pretrained_cfg, download_pretrained, list_pretrained_tags_by_model | |
from .transform import image_transform | |
from .tokenizer import HFTokenizer, tokenize | |
from .utils import resize_clip_pos_embed, resize_evaclip_pos_embed, resize_visual_pos_embed, resize_eva_pos_embed | |
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] | |
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs | |
def _natural_key(string_): | |
return [int(s) if s.isdigit() else s for s in re.split(r'(\d+)', string_.lower())] | |
def _rescan_model_configs(): | |
global _MODEL_CONFIGS | |
config_ext = ('.json',) | |
config_files = [] | |
for config_path in _MODEL_CONFIG_PATHS: | |
if config_path.is_file() and config_path.suffix in config_ext: | |
config_files.append(config_path) | |
elif config_path.is_dir(): | |
for ext in config_ext: | |
config_files.extend(config_path.glob(f'*{ext}')) | |
for cf in config_files: | |
with open(cf, "r", encoding="utf8") as f: | |
model_cfg = json.load(f) | |
if all(a in model_cfg for a in ('embed_dim', 'vision_cfg', 'text_cfg')): | |
_MODEL_CONFIGS[cf.stem] = model_cfg | |
_MODEL_CONFIGS = dict(sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))) | |
_rescan_model_configs() # initial populate of model config registry | |
def list_models(): | |
""" enumerate available model architectures based on config files """ | |
return list(_MODEL_CONFIGS.keys()) | |
def add_model_config(path): | |
""" add model config path or file and update registry """ | |
if not isinstance(path, Path): | |
path = Path(path) | |
_MODEL_CONFIG_PATHS.append(path) | |
_rescan_model_configs() | |
def get_model_config(model_name): | |
if model_name in _MODEL_CONFIGS: | |
return deepcopy(_MODEL_CONFIGS[model_name]) | |
else: | |
return None | |
def get_tokenizer(model_name): | |
config = get_model_config(model_name) | |
tokenizer = HFTokenizer(config['text_cfg']['hf_tokenizer_name']) if 'hf_tokenizer_name' in config['text_cfg'] else tokenize | |
return tokenizer | |
# loading openai CLIP weights when is_openai=True for training | |
def load_state_dict(checkpoint_path: str, map_location: str='cpu', model_key: str='model|module|state_dict', is_openai: bool=False, skip_list: list=[]): | |
if is_openai: | |
model = torch.jit.load(checkpoint_path, map_location="cpu").eval() | |
state_dict = model.state_dict() | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
state_dict.pop(key, None) | |
else: | |
checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
for mk in model_key.split('|'): | |
if isinstance(checkpoint, dict) and mk in checkpoint: | |
state_dict = checkpoint[mk] | |
break | |
else: | |
state_dict = checkpoint | |
if next(iter(state_dict.items()))[0].startswith('module'): | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
for k in skip_list: | |
if k in list(state_dict.keys()): | |
logging.info(f"Removing key {k} from pretrained checkpoint") | |
del state_dict[k] | |
if os.getenv('RoPE') == '1': | |
for k in list(state_dict.keys()): | |
if 'freqs_cos' in k or 'freqs_sin' in k: | |
del state_dict[k] | |
return state_dict | |
def load_checkpoint(model, checkpoint_path, model_key="model|module|state_dict", strict=True): | |
state_dict = load_state_dict(checkpoint_path, model_key=model_key, is_openai=False) | |
# detect old format and make compatible with new format | |
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): | |
state_dict = convert_to_custom_text_state_dict(state_dict) | |
if 'text.logit_scale' in state_dict and hasattr(model, 'logit_scale'): | |
state_dict['logit_scale'] = state_dict['text.logit_scale'] | |
del state_dict['text.logit_scale'] | |
# resize_clip_pos_embed for CLIP and open CLIP | |
if 'visual.positional_embedding' in state_dict: | |
resize_clip_pos_embed(state_dict, model) | |
# specified to eva_vit_model | |
elif 'visual.pos_embed' in state_dict: | |
resize_evaclip_pos_embed(state_dict, model) | |
# resize_clip_pos_embed(state_dict, model) | |
incompatible_keys = model.load_state_dict(state_dict, strict=strict) | |
logging.info(f"incompatible_keys.missing_keys: {incompatible_keys.missing_keys}") | |
return incompatible_keys | |
def load_clip_visual_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): | |
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) | |
for k in list(state_dict.keys()): | |
if not k.startswith('visual.'): | |
del state_dict[k] | |
for k in list(state_dict.keys()): | |
if k.startswith('visual.'): | |
new_k = k[7:] | |
state_dict[new_k] = state_dict[k] | |
del state_dict[k] | |
return state_dict | |
def load_clip_text_state_dict(checkpoint_path: str, map_location: str='cpu', is_openai: bool=False, skip_list:list=[]): | |
state_dict = load_state_dict(checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list) | |
for k in list(state_dict.keys()): | |
if k.startswith('visual.'): | |
del state_dict[k] | |
return state_dict | |
def get_pretrained_tag(pretrained_model): | |
pretrained_model = pretrained_model.lower() | |
if "laion" in pretrained_model or "open_clip" in pretrained_model: | |
return "open_clip" | |
elif "openai" in pretrained_model: | |
return "clip" | |
elif "eva" in pretrained_model and "clip" in pretrained_model: | |
return "eva_clip" | |
else: | |
return "other" | |
def load_pretrained_checkpoint( | |
model, | |
visual_checkpoint_path, | |
text_checkpoint_path, | |
strict=True, | |
visual_model=None, | |
text_model=None, | |
model_key="model|module|state_dict", | |
skip_list=[]): | |
visual_tag = get_pretrained_tag(visual_model) | |
text_tag = get_pretrained_tag(text_model) | |
logging.info(f"num of model state_dict keys: {len(model.state_dict().keys())}") | |
visual_incompatible_keys, text_incompatible_keys = None, None | |
if visual_checkpoint_path: | |
if visual_tag == "eva_clip" or visual_tag == "open_clip": | |
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=False, skip_list=skip_list) | |
elif visual_tag == "clip": | |
visual_state_dict = load_clip_visual_state_dict(visual_checkpoint_path, is_openai=True, skip_list=skip_list) | |
else: | |
visual_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) | |
# resize_clip_pos_embed for CLIP and open CLIP | |
if 'positional_embedding' in visual_state_dict: | |
resize_visual_pos_embed(visual_state_dict, model) | |
# specified to EVA model | |
elif 'pos_embed' in visual_state_dict: | |
resize_eva_pos_embed(visual_state_dict, model) | |
visual_incompatible_keys = model.visual.load_state_dict(visual_state_dict, strict=strict) | |
logging.info(f"num of loaded visual_state_dict keys: {len(visual_state_dict.keys())}") | |
logging.info(f"visual_incompatible_keys.missing_keys: {visual_incompatible_keys.missing_keys}") | |
if text_checkpoint_path: | |
if text_tag == "eva_clip" or text_tag == "open_clip": | |
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=False, skip_list=skip_list) | |
elif text_tag == "clip": | |
text_state_dict = load_clip_text_state_dict(text_checkpoint_path, is_openai=True, skip_list=skip_list) | |
else: | |
text_state_dict = load_state_dict(visual_checkpoint_path, model_key=model_key, is_openai=False, skip_list=skip_list) | |
text_incompatible_keys = model.text.load_state_dict(text_state_dict, strict=strict) | |
logging.info(f"num of loaded text_state_dict keys: {len(text_state_dict.keys())}") | |
logging.info(f"text_incompatible_keys.missing_keys: {text_incompatible_keys.missing_keys}") | |
return visual_incompatible_keys, text_incompatible_keys | |
def create_model( | |
model_name: str, | |
pretrained: Optional[str] = None, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_clip: bool = False, | |
force_patch_dropout: Optional[float] = None, | |
pretrained_image: str = '', | |
pretrained_text: str = '', | |
pretrained_hf: bool = True, | |
pretrained_visual_model: str = None, | |
pretrained_text_model: str = None, | |
cache_dir: Optional[str] = None, | |
skip_list: list = [], | |
): | |
model_name = model_name.replace('/', '-') # for callers using old naming with / in ViT names | |
if isinstance(device, str): | |
device = torch.device(device) | |
if pretrained and pretrained.lower() == 'openai': | |
logging.info(f'Loading pretrained {model_name} from OpenAI.') | |
model = load_openai_model( | |
model_name, | |
precision=precision, | |
device=device, | |
jit=jit, | |
cache_dir=cache_dir, | |
) | |
else: | |
model_cfg = get_model_config(model_name) | |
if model_cfg is not None: | |
logging.info(f'Loaded {model_name} model config.') | |
else: | |
logging.error(f'Model config for {model_name} not found; available models {list_models()}.') | |
raise RuntimeError(f'Model config for {model_name} not found.') | |
if 'rope' in model_cfg.get('vision_cfg', {}): | |
if model_cfg['vision_cfg']['rope']: | |
os.environ['RoPE'] = "1" | |
else: | |
os.environ['RoPE'] = "0" | |
if force_quick_gelu: | |
# override for use of QuickGELU on non-OpenAI transformer models | |
model_cfg["quick_gelu"] = True | |
if force_patch_dropout is not None: | |
# override the default patch dropout value | |
model_cfg['vision_cfg']["patch_dropout"] = force_patch_dropout | |
cast_dtype = get_cast_dtype(precision) | |
custom_clip = model_cfg.pop('custom_text', False) or force_custom_clip or ('hf_model_name' in model_cfg['text_cfg']) | |
if custom_clip: | |
if 'hf_model_name' in model_cfg.get('text_cfg', {}): | |
model_cfg['text_cfg']['hf_model_pretrained'] = pretrained_hf | |
model = CustomCLIP(**model_cfg, cast_dtype=cast_dtype) | |
else: | |
model = CLIP(**model_cfg, cast_dtype=cast_dtype) | |
pretrained_cfg = {} | |
if pretrained: | |
checkpoint_path = '' | |
pretrained_cfg = get_pretrained_cfg(model_name, pretrained) | |
if pretrained_cfg: | |
checkpoint_path = download_pretrained(pretrained_cfg, cache_dir=cache_dir) | |
elif os.path.exists(pretrained): | |
checkpoint_path = pretrained | |
if checkpoint_path: | |
logging.info(f'Loading pretrained {model_name} weights ({pretrained}).') | |
load_checkpoint(model, | |
checkpoint_path, | |
model_key="model|module|state_dict", | |
strict=False | |
) | |
else: | |
error_str = ( | |
f'Pretrained weights ({pretrained}) not found for model {model_name}.' | |
f'Available pretrained tags ({list_pretrained_tags_by_model(model_name)}.') | |
logging.warning(error_str) | |
raise RuntimeError(error_str) | |
else: | |
visual_checkpoint_path = '' | |
text_checkpoint_path = '' | |
if pretrained_image: | |
pretrained_visual_model = pretrained_visual_model.replace('/', '-') # for callers using old naming with / in ViT names | |
pretrained_image_cfg = get_pretrained_cfg(pretrained_visual_model, pretrained_image) | |
if 'timm_model_name' in model_cfg.get('vision_cfg', {}): | |
# pretrained weight loading for timm models set via vision_cfg | |
model_cfg['vision_cfg']['timm_model_pretrained'] = True | |
elif pretrained_image_cfg: | |
visual_checkpoint_path = download_pretrained(pretrained_image_cfg, cache_dir=cache_dir) | |
elif os.path.exists(pretrained_image): | |
visual_checkpoint_path = pretrained_image | |
else: | |
logging.warning(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') | |
raise RuntimeError(f'Pretrained weights ({visual_checkpoint_path}) not found for model {model_name}.visual.') | |
if pretrained_text: | |
pretrained_text_model = pretrained_text_model.replace('/', '-') # for callers using old naming with / in ViT names | |
pretrained_text_cfg = get_pretrained_cfg(pretrained_text_model, pretrained_text) | |
if pretrained_image_cfg: | |
text_checkpoint_path = download_pretrained(pretrained_text_cfg, cache_dir=cache_dir) | |
elif os.path.exists(pretrained_text): | |
text_checkpoint_path = pretrained_text | |
else: | |
logging.warning(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') | |
raise RuntimeError(f'Pretrained weights ({text_checkpoint_path}) not found for model {model_name}.text.') | |
if visual_checkpoint_path: | |
logging.info(f'Loading pretrained {model_name}.visual weights ({visual_checkpoint_path}).') | |
if text_checkpoint_path: | |
logging.info(f'Loading pretrained {model_name}.text weights ({text_checkpoint_path}).') | |
if visual_checkpoint_path or text_checkpoint_path: | |
load_pretrained_checkpoint( | |
model, | |
visual_checkpoint_path, | |
text_checkpoint_path, | |
strict=False, | |
visual_model=pretrained_visual_model, | |
text_model=pretrained_text_model, | |
model_key="model|module|state_dict", | |
skip_list=skip_list | |
) | |
if "fp16" in precision or "bf16" in precision: | |
logging.info(f'convert precision to {precision}') | |
model = model.to(torch.bfloat16) if 'bf16' in precision else model.to(torch.float16) | |
model.to(device=device) | |
# set image / mean metadata from pretrained_cfg if available, or use default | |
model.visual.image_mean = pretrained_cfg.get('mean', None) or OPENAI_DATASET_MEAN | |
model.visual.image_std = pretrained_cfg.get('std', None) or OPENAI_DATASET_STD | |
if jit: | |
model = torch.jit.script(model) | |
return model | |
def create_model_and_transforms( | |
model_name: str, | |
pretrained: Optional[str] = None, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_clip: bool = False, | |
force_patch_dropout: Optional[float] = None, | |
pretrained_image: str = '', | |
pretrained_text: str = '', | |
pretrained_hf: bool = True, | |
pretrained_visual_model: str = None, | |
pretrained_text_model: str = None, | |
image_mean: Optional[Tuple[float, ...]] = None, | |
image_std: Optional[Tuple[float, ...]] = None, | |
cache_dir: Optional[str] = None, | |
skip_list: list = [], | |
): | |
model = create_model( | |
model_name, | |
pretrained, | |
precision=precision, | |
device=device, | |
jit=jit, | |
force_quick_gelu=force_quick_gelu, | |
force_custom_clip=force_custom_clip, | |
force_patch_dropout=force_patch_dropout, | |
pretrained_image=pretrained_image, | |
pretrained_text=pretrained_text, | |
pretrained_hf=pretrained_hf, | |
pretrained_visual_model=pretrained_visual_model, | |
pretrained_text_model=pretrained_text_model, | |
cache_dir=cache_dir, | |
skip_list=skip_list, | |
) | |
image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
image_std = image_std or getattr(model.visual, 'image_std', None) | |
preprocess_train = image_transform( | |
model.visual.image_size, | |
is_train=True, | |
mean=image_mean, | |
std=image_std | |
) | |
preprocess_val = image_transform( | |
model.visual.image_size, | |
is_train=False, | |
mean=image_mean, | |
std=image_std | |
) | |
return model, preprocess_train, preprocess_val | |
def create_transforms( | |
model_name: str, | |
pretrained: Optional[str] = None, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_clip: bool = False, | |
force_patch_dropout: Optional[float] = None, | |
pretrained_image: str = '', | |
pretrained_text: str = '', | |
pretrained_hf: bool = True, | |
pretrained_visual_model: str = None, | |
pretrained_text_model: str = None, | |
image_mean: Optional[Tuple[float, ...]] = None, | |
image_std: Optional[Tuple[float, ...]] = None, | |
cache_dir: Optional[str] = None, | |
skip_list: list = [], | |
): | |
model = create_model( | |
model_name, | |
pretrained, | |
precision=precision, | |
device=device, | |
jit=jit, | |
force_quick_gelu=force_quick_gelu, | |
force_custom_clip=force_custom_clip, | |
force_patch_dropout=force_patch_dropout, | |
pretrained_image=pretrained_image, | |
pretrained_text=pretrained_text, | |
pretrained_hf=pretrained_hf, | |
pretrained_visual_model=pretrained_visual_model, | |
pretrained_text_model=pretrained_text_model, | |
cache_dir=cache_dir, | |
skip_list=skip_list, | |
) | |
image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
image_std = image_std or getattr(model.visual, 'image_std', None) | |
preprocess_train = image_transform( | |
model.visual.image_size, | |
is_train=True, | |
mean=image_mean, | |
std=image_std | |
) | |
preprocess_val = image_transform( | |
model.visual.image_size, | |
is_train=False, | |
mean=image_mean, | |
std=image_std | |
) | |
del model | |
return preprocess_train, preprocess_val | |
def create_model_from_pretrained( | |
model_name: str, | |
pretrained: str, | |
precision: str = 'fp32', | |
device: Union[str, torch.device] = 'cpu', | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
force_custom_clip: bool = False, | |
force_patch_dropout: Optional[float] = None, | |
return_transform: bool = True, | |
image_mean: Optional[Tuple[float, ...]] = None, | |
image_std: Optional[Tuple[float, ...]] = None, | |
cache_dir: Optional[str] = None, | |
is_frozen: bool = False, | |
): | |
if not is_pretrained_cfg(model_name, pretrained) and not os.path.exists(pretrained): | |
raise RuntimeError( | |
f'{pretrained} is not a valid pretrained cfg or checkpoint for {model_name}.' | |
f' Use open_clip.list_pretrained() to find one.') | |
model = create_model( | |
model_name, | |
pretrained, | |
precision=precision, | |
device=device, | |
jit=jit, | |
force_quick_gelu=force_quick_gelu, | |
force_custom_clip=force_custom_clip, | |
force_patch_dropout=force_patch_dropout, | |
cache_dir=cache_dir, | |
) | |
if is_frozen: | |
for param in model.parameters(): | |
param.requires_grad = False | |
if not return_transform: | |
return model | |
image_mean = image_mean or getattr(model.visual, 'image_mean', None) | |
image_std = image_std or getattr(model.visual, 'image_std', None) | |
preprocess = image_transform( | |
model.visual.image_size, | |
is_train=False, | |
mean=image_mean, | |
std=image_std | |
) | |
return model, preprocess |