SunderAli17 commited on
Commit
1fc4a97
·
verified ·
1 Parent(s): dc9c648

Create utils.py

Browse files
Files changed (1) hide show
  1. evaclip/utils.py +323 -0
evaclip/utils.py ADDED
@@ -0,0 +1,323 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import repeat
2
+ import collections.abc
3
+ import logging
4
+ import math
5
+ import numpy as np
6
+
7
+ import torch
8
+ from torch import nn as nn
9
+ from torchvision.ops.misc import FrozenBatchNorm2d
10
+ import torch.nn.functional as F
11
+
12
+ # open CLIP
13
+ def resize_clip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
14
+ # Rescale the grid of position embeddings when loading from state_dict
15
+ old_pos_embed = state_dict.get('visual.positional_embedding', None)
16
+ if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
17
+ return
18
+ grid_size = to_2tuple(model.visual.grid_size)
19
+ extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
20
+ new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
21
+ if new_seq_len == old_pos_embed.shape[0]:
22
+ return
23
+
24
+ if extra_tokens:
25
+ pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
26
+ else:
27
+ pos_emb_tok, pos_emb_img = None, old_pos_embed
28
+ old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
29
+
30
+ logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
31
+ pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
32
+ pos_emb_img = F.interpolate(
33
+ pos_emb_img,
34
+ size=grid_size,
35
+ mode=interpolation,
36
+ align_corners=True,
37
+ )
38
+ pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
39
+ if pos_emb_tok is not None:
40
+ new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
41
+ else:
42
+ new_pos_embed = pos_emb_img
43
+ state_dict['visual.positional_embedding'] = new_pos_embed
44
+
45
+
46
+ def resize_visual_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
47
+ # Rescale the grid of position embeddings when loading from state_dict
48
+ old_pos_embed = state_dict.get('positional_embedding', None)
49
+ if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
50
+ return
51
+ grid_size = to_2tuple(model.visual.grid_size)
52
+ extra_tokens = 1 # FIXME detect different token configs (ie no class token, or more)
53
+ new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
54
+ if new_seq_len == old_pos_embed.shape[0]:
55
+ return
56
+
57
+ if extra_tokens:
58
+ pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
59
+ else:
60
+ pos_emb_tok, pos_emb_img = None, old_pos_embed
61
+ old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))
62
+
63
+ logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
64
+ pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
65
+ pos_emb_img = F.interpolate(
66
+ pos_emb_img,
67
+ size=grid_size,
68
+ mode=interpolation,
69
+ align_corners=True,
70
+ )
71
+ pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
72
+ if pos_emb_tok is not None:
73
+ new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
74
+ else:
75
+ new_pos_embed = pos_emb_img
76
+ state_dict['positional_embedding'] = new_pos_embed
77
+
78
+ def resize_evaclip_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
79
+ all_keys = list(state_dict.keys())
80
+ # interpolate position embedding
81
+ if 'visual.pos_embed' in state_dict:
82
+ pos_embed_checkpoint = state_dict['visual.pos_embed']
83
+ embedding_size = pos_embed_checkpoint.shape[-1]
84
+ num_patches = model.visual.patch_embed.num_patches
85
+ num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
86
+ # height (== width) for the checkpoint position embedding
87
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
88
+ # height (== width) for the new position embedding
89
+ new_size = int(num_patches ** 0.5)
90
+ # class_token and dist_token are kept unchanged
91
+ if orig_size != new_size:
92
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
93
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
94
+ # only the position tokens are interpolated
95
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
96
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
97
+ pos_tokens = torch.nn.functional.interpolate(
98
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
99
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
100
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
101
+ state_dict['visual.pos_embed'] = new_pos_embed
102
+
103
+ patch_embed_proj = state_dict['visual.patch_embed.proj.weight']
104
+ patch_size = model.visual.patch_embed.patch_size
105
+ state_dict['visual.patch_embed.proj.weight'] = torch.nn.functional.interpolate(
106
+ patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
107
+
108
+
109
+ def resize_eva_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
110
+ all_keys = list(state_dict.keys())
111
+ # interpolate position embedding
112
+ if 'pos_embed' in state_dict:
113
+ pos_embed_checkpoint = state_dict['pos_embed']
114
+ embedding_size = pos_embed_checkpoint.shape[-1]
115
+ num_patches = model.visual.patch_embed.num_patches
116
+ num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
117
+ # height (== width) for the checkpoint position embedding
118
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
119
+ # height (== width) for the new position embedding
120
+ new_size = int(num_patches ** 0.5)
121
+ # class_token and dist_token are kept unchanged
122
+ if orig_size != new_size:
123
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
124
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
125
+ # only the position tokens are interpolated
126
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
127
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
128
+ pos_tokens = torch.nn.functional.interpolate(
129
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
130
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
131
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
132
+ state_dict['pos_embed'] = new_pos_embed
133
+
134
+ patch_embed_proj = state_dict['patch_embed.proj.weight']
135
+ patch_size = model.visual.patch_embed.patch_size
136
+ state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
137
+ patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
138
+
139
+
140
+ def resize_rel_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1):
141
+ all_keys = list(state_dict.keys())
142
+ for key in all_keys:
143
+ if "relative_position_index" in key:
144
+ state_dict.pop(key)
145
+
146
+ if "relative_position_bias_table" in key:
147
+ rel_pos_bias = state_dict[key]
148
+ src_num_pos, num_attn_heads = rel_pos_bias.size()
149
+ dst_num_pos, _ = model.visual.state_dict()[key].size()
150
+ dst_patch_shape = model.visual.patch_embed.patch_shape
151
+ if dst_patch_shape[0] != dst_patch_shape[1]:
152
+ raise NotImplementedError()
153
+ num_extra_tokens = dst_num_pos - (dst_patch_shape[0] * 2 - 1) * (dst_patch_shape[1] * 2 - 1)
154
+ src_size = int((src_num_pos - num_extra_tokens) ** 0.5)
155
+ dst_size = int((dst_num_pos - num_extra_tokens) ** 0.5)
156
+ if src_size != dst_size:
157
+ print("Position interpolate for %s from %dx%d to %dx%d" % (
158
+ key, src_size, src_size, dst_size, dst_size))
159
+ extra_tokens = rel_pos_bias[-num_extra_tokens:, :]
160
+ rel_pos_bias = rel_pos_bias[:-num_extra_tokens, :]
161
+
162
+ def geometric_progression(a, r, n):
163
+ return a * (1.0 - r ** n) / (1.0 - r)
164
+
165
+ left, right = 1.01, 1.5
166
+ while right - left > 1e-6:
167
+ q = (left + right) / 2.0
168
+ gp = geometric_progression(1, q, src_size // 2)
169
+ if gp > dst_size // 2:
170
+ right = q
171
+ else:
172
+ left = q
173
+
174
+ # if q > 1.090307:
175
+ # q = 1.090307
176
+
177
+ dis = []
178
+ cur = 1
179
+ for i in range(src_size // 2):
180
+ dis.append(cur)
181
+ cur += q ** (i + 1)
182
+
183
+ r_ids = [-_ for _ in reversed(dis)]
184
+
185
+ x = r_ids + [0] + dis
186
+ y = r_ids + [0] + dis
187
+
188
+ t = dst_size // 2.0
189
+ dx = np.arange(-t, t + 0.1, 1.0)
190
+ dy = np.arange(-t, t + 0.1, 1.0)
191
+
192
+ print("Original positions = %s" % str(x))
193
+ print("Target positions = %s" % str(dx))
194
+
195
+ all_rel_pos_bias = []
196
+
197
+ for i in range(num_attn_heads):
198
+ z = rel_pos_bias[:, i].view(src_size, src_size).float().numpy()
199
+ f = F.interpolate.interp2d(x, y, z, kind='cubic')
200
+ all_rel_pos_bias.append(
201
+ torch.Tensor(f(dx, dy)).contiguous().view(-1, 1).to(rel_pos_bias.device))
202
+
203
+ rel_pos_bias = torch.cat(all_rel_pos_bias, dim=-1)
204
+
205
+ new_rel_pos_bias = torch.cat((rel_pos_bias, extra_tokens), dim=0)
206
+ state_dict[key] = new_rel_pos_bias
207
+
208
+ # interpolate position embedding
209
+ if 'pos_embed' in state_dict:
210
+ pos_embed_checkpoint = state_dict['pos_embed']
211
+ embedding_size = pos_embed_checkpoint.shape[-1]
212
+ num_patches = model.visual.patch_embed.num_patches
213
+ num_extra_tokens = model.visual.pos_embed.shape[-2] - num_patches
214
+ # height (== width) for the checkpoint position embedding
215
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
216
+ # height (== width) for the new position embedding
217
+ new_size = int(num_patches ** 0.5)
218
+ # class_token and dist_token are kept unchanged
219
+ if orig_size != new_size:
220
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
221
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
222
+ # only the position tokens are interpolated
223
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
224
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
225
+ pos_tokens = torch.nn.functional.interpolate(
226
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
227
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
228
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
229
+ state_dict['pos_embed'] = new_pos_embed
230
+
231
+ patch_embed_proj = state_dict['patch_embed.proj.weight']
232
+ patch_size = model.visual.patch_embed.patch_size
233
+ state_dict['patch_embed.proj.weight'] = torch.nn.functional.interpolate(
234
+ patch_embed_proj.float(), size=patch_size, mode='bicubic', align_corners=False)
235
+
236
+
237
+ def freeze_batch_norm_2d(module, module_match={}, name=''):
238
+ """
239
+ Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
240
+ itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
241
+ returned. Otherwise, the module is walked recursively and submodules are converted in place.
242
+ Args:
243
+ module (torch.nn.Module): Any PyTorch module.
244
+ module_match (dict): Dictionary of full module names to freeze (all if empty)
245
+ name (str): Full module name (prefix)
246
+ Returns:
247
+ torch.nn.Module: Resulting module
248
+ Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
249
+ """
250
+ res = module
251
+ is_match = True
252
+ if module_match:
253
+ is_match = name in module_match
254
+ if is_match and isinstance(module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)):
255
+ res = FrozenBatchNorm2d(module.num_features)
256
+ res.num_features = module.num_features
257
+ res.affine = module.affine
258
+ if module.affine:
259
+ res.weight.data = module.weight.data.clone().detach()
260
+ res.bias.data = module.bias.data.clone().detach()
261
+ res.running_mean.data = module.running_mean.data
262
+ res.running_var.data = module.running_var.data
263
+ res.eps = module.eps
264
+ else:
265
+ for child_name, child in module.named_children():
266
+ full_child_name = '.'.join([name, child_name]) if name else child_name
267
+ new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
268
+ if new_child is not child:
269
+ res.add_module(child_name, new_child)
270
+ return res
271
+
272
+
273
+ # From PyTorch internals
274
+ def _ntuple(n):
275
+ def parse(x):
276
+ if isinstance(x, collections.abc.Iterable):
277
+ return x
278
+ return tuple(repeat(x, n))
279
+ return parse
280
+
281
+
282
+ to_1tuple = _ntuple(1)
283
+ to_2tuple = _ntuple(2)
284
+ to_3tuple = _ntuple(3)
285
+ to_4tuple = _ntuple(4)
286
+ to_ntuple = lambda n, x: _ntuple(n)(x)
287
+
288
+
289
+ def is_logging(args):
290
+ def is_global_master(args):
291
+ return args.rank == 0
292
+
293
+ def is_local_master(args):
294
+ return args.local_rank == 0
295
+
296
+ def is_master(args, local=False):
297
+ return is_local_master(args) if local else is_global_master(args)
298
+ return is_master
299
+
300
+
301
+ class AllGather(torch.autograd.Function):
302
+ """An autograd function that performs allgather on a tensor.
303
+ Performs all_gather operation on the provided tensors.
304
+ *** Warning ***: torch.distributed.all_gather has no gradient.
305
+ """
306
+
307
+ @staticmethod
308
+ def forward(ctx, tensor, rank, world_size):
309
+ tensors_gather = [torch.empty_like(tensor) for _ in range(world_size)]
310
+ torch.distributed.all_gather(tensors_gather, tensor)
311
+ ctx.rank = rank
312
+ ctx.batch_size = tensor.shape[0]
313
+ return torch.cat(tensors_gather, 0)
314
+
315
+ @staticmethod
316
+ def backward(ctx, grad_output):
317
+ return (
318
+ grad_output[ctx.batch_size * ctx.rank: ctx.batch_size * (ctx.rank + 1)],
319
+ None,
320
+ None
321
+ )
322
+
323
+ allgather = AllGather.apply