Spaces:
Runtime error
Runtime error
import gradio as gr | |
def greet(name): | |
return "Hello " + name + "!!" | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() | |
import datetime | |
import time | |
from skimage import io, color | |
from PIL import Image | |
from io import BytesIO | |
from skimage.io import imread, imsave | |
import imutils | |
# Location of files on your system | |
PATH_TO_FILES = '/home/ekene/Documents/working/ChoiceData/imglb2017/' | |
# Start by importing modules | |
from glob import glob | |
import cv2 | |
import datetime | |
import sys | |
import os | |
import string | |
import warnings | |
from os.path import join | |
import matplotlib.pyplot as plt | |
def main(argv): | |
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S%f") | |
print("Initialising...") | |
if len(argv) == 2: | |
filename = argv[1] | |
full_path = PATH_TO_FILES + filename | |
img = imread(full_path) | |
scale_image = 2 # downscale the image | |
img = cv2.resize(img, (scale_image, scale_image)) | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
#otsu = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) | |
#img = cv2.cvtColor(otsu, cv2.COLOR_GRAY2BGR) | |
# Apply histogram equalization | |
h, w = gray.shape[:2] | |
cv_he = cv2.equalizeHist(gray) | |
#cv2.imshow('HE', cv_he) | |
_, contours, hierarchy = cv2.findContours(cv_he, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
ContourSeparation=(20,20)) | |
# sort contours by contour area | |
# keep only contours that are larger than 10% of the image area | |
# (here we assume the largest contour will be around the "head") | |
filtered_contours = [c for c in contours if cv2.contourArea(c) > 1000] | |
#calculate distance between each contour and sort contours by distance | |
# print(filtered_contours, contours) | |
closest_contours = sorted(filtered_contours, key = cv2.contourArea, reverse=True) | |
closest_contours = closest_contours[:4] | |
# selected_contours = closest_contours | |
# sort by smallest contour area | |
#filtered_contours = sorted(filtered_contours, key = cv2.contourArea, reverse=True) | |
# used for testing | |
if len(filtered_contours) > 1: | |
return 0 | |
cv2.drawContours(gray, [filtered_contours[0]], -1, (255,255,255), 2) | |
cv2.drawContours(gray, filtered_contours, -1, (255,255,255), 2) | |
cv2.imshow("search by smallest area", gray) | |
cv2.waitKey(0) | |
return 0 | |
# adding to show a function image | |
def show_image(frame): | |
plt.subplot(1,2,1) | |
plt.title('Original Image') | |
plt.imshow(frame, cmap='gray') | |
plt.subplot(1,2,2) | |
plt.title('Image with contours drawn') | |
plt.imshow(frame, cmap='gray') | |
plt.show() | |
return 0 | |
def image_face_detection(path_to_image): | |
# Initialise the trackbar | |
cv2.namedWindow('Frame') | |
cv2.namedWindow('Threshold') | |
current_image = cv2.imread(path_to_image) | |
frame = current_image | |
# threshold_trackbar = cv2.createTrackbar('Threshold', 'Frame', 51, 255, nothing) | |
# cv2.createTrackbar('Threshold', 'Frame', 100, 255, nothing) | |
# cv2.createTrackbar('Threshold', 'Frame', 130, 255, nothing) | |
# cv2.createTrackbar('Threshold', 'Frame', 150, 255, nothing) | |
# cv2.createTrackbar('Threshold', 'Frame', 90, 255, nothing) | |
# cv2.createTrackbar('Threshold', 'Frame', 180, 255, nothing) | |
#cv2.namedWindow("Frame") | |
#cv2.createTrackbar('Threshold', "Frame", 50, 255, nothing) | |
# Initialize the first frame, resize the window, start the timer | |
# first_time = True | |
first_time = True | |
# start_clock = time.time() | |
# main_loop() | |
# print('Run time ', time.time()-start_clock) | |
start_clock = time.time() | |
# Capture keyboard events | |
key = cv2.waitKey(1) & 0xFF | |
# Press space to pause or unpause the video |