import json import os import time import warnings from concurrent.futures import ThreadPoolExecutor from logging import getLogger from threading import Lock from typing import Dict, Generator, List, Optional, Tuple, Union import requests from lagent.schema import ModelStatusCode from lagent.utils.util import filter_suffix from .base_api import BaseAPILLM warnings.simplefilter('default') SENSENOVA_API_BASE = 'https://api.sensenova.cn/v1/llm/chat-completions' sensechat_models = {'SenseChat-5': 131072, 'SenseChat-5-Cantonese': 32768} class SensenovaAPI(BaseAPILLM): """Model wrapper around SenseTime's models. Args: model_type (str): The name of SenseTime's model. retry (int): Number of retires if the API call fails. Defaults to 2. key (str or List[str]): SenseTime key(s). In particular, when it is set to "ENV", the key will be fetched from the environment variable $SENSENOVA_API_KEY. If it's a list, the keys will be used in round-robin manner. Defaults to 'ENV'. meta_template (Dict, optional): The model's meta prompt template if needed, in case the requirement of injecting or wrapping of any meta instructions. sensenova_api_base (str): The base url of SenseTime's API. Defaults to 'https://api.sensenova.cn/v1/llm/chat-completions'. gen_params: Default generation configuration which could be overridden on the fly of generation. """ is_api: bool = True def __init__( self, model_type: str = 'SenseChat-5-Cantonese', retry: int = 2, json_mode: bool = False, key: Union[str, List[str]] = 'ENV', meta_template: Optional[Dict] = [ dict(role='system', api_role='system'), dict(role='user', api_role='user'), dict(role='assistant', api_role='assistant'), dict(role='environment', api_role='system'), ], sensenova_api_base: str = SENSENOVA_API_BASE, proxies: Optional[Dict] = None, **gen_params, ): super().__init__( model_type=model_type, meta_template=meta_template, retry=retry, **gen_params, ) self.logger = getLogger(__name__) if isinstance(key, str): # First, apply for SenseNova's ak and sk from SenseTime staff # Then, generated SENSENOVA_API_KEY using lagent.utils.gen_key.auto_gen_jwt_token(ak, sk) self.keys = [ os.getenv('SENSENOVA_API_KEY') if key == 'ENV' else key ] else: self.keys = key # record invalid keys and skip them when requesting API # - keys have insufficient_quota self.invalid_keys = set() self.key_ctr = 0 self.url = sensenova_api_base self.model_type = model_type self.proxies = proxies self.json_mode = json_mode def chat( self, inputs: Union[List[dict], List[List[dict]]], **gen_params, ) -> Union[str, List[str]]: """Generate responses given the contexts. Args: inputs (Union[List[dict], List[List[dict]]]): a list of messages or list of lists of messages gen_params: additional generation configuration Returns: Union[str, List[str]]: generated string(s) """ assert isinstance(inputs, list) if 'max_tokens' in gen_params: raise NotImplementedError('unsupported parameter: max_tokens') gen_params = {**self.gen_params, **gen_params} with ThreadPoolExecutor(max_workers=20) as executor: tasks = [ executor.submit(self._chat, self.template_parser._prompt2api(messages), **gen_params) for messages in ( [inputs] if isinstance(inputs[0], dict) else inputs) ] ret = [task.result() for task in tasks] return ret[0] if isinstance(inputs[0], dict) else ret def stream_chat( self, inputs: List[dict], **gen_params, ) -> Generator[Tuple[ModelStatusCode, str, Optional[str]], None, None]: """Generate responses given the contexts. Args: inputs (List[dict]): a list of messages gen_params: additional generation configuration Yields: Tuple[ModelStatusCode, str, Optional[str]]: Status code, generated string, and optional metadata """ assert isinstance(inputs, list) if 'max_tokens' in gen_params: raise NotImplementedError('unsupported parameter: max_tokens') gen_params = self.update_gen_params(**gen_params) gen_params['stream'] = True resp = '' finished = False stop_words = gen_params.get('stop_words') or [] messages = self.template_parser._prompt2api(inputs) for text in self._stream_chat(messages, **gen_params): # TODO 测试 resp = text 还是 resp += text resp += text if not resp: continue # remove stop_words for sw in stop_words: if sw in resp: resp = filter_suffix(resp, stop_words) finished = True break yield ModelStatusCode.STREAM_ING, resp, None if finished: break yield ModelStatusCode.END, resp, None def _chat(self, messages: List[dict], **gen_params) -> str: """Generate completion from a list of templates. Args: messages (List[dict]): a list of prompt dictionaries gen_params: additional generation configuration Returns: str: The generated string. """ assert isinstance(messages, list) header, data = self.generate_request_data( model_type=self.model_type, messages=messages, gen_params=gen_params, json_mode=self.json_mode, ) max_num_retries = 0 while max_num_retries < self.retry: self._wait() with Lock(): if len(self.invalid_keys) == len(self.keys): raise RuntimeError('All keys have insufficient quota.') # find the next valid key while True: self.key_ctr += 1 if self.key_ctr == len(self.keys): self.key_ctr = 0 if self.keys[self.key_ctr] not in self.invalid_keys: break key = self.keys[self.key_ctr] header['Authorization'] = f'Bearer {key}' response = dict() try: raw_response = requests.post( self.url, headers=header, data=json.dumps(data), proxies=self.proxies, ) response = raw_response.json() return response['choices'][0]['message']['content'].strip() except requests.ConnectionError: print('Got connection error, retrying...') continue except requests.JSONDecodeError: print('JsonDecode error, got', str(raw_response.content)) continue except KeyError: if 'error' in response: if response['error']['code'] == 'rate_limit_exceeded': time.sleep(1) continue elif response['error']['code'] == 'insufficient_quota': self.invalid_keys.add(key) self.logger.warn(f'insufficient_quota key: {key}') continue print('Find error message in response: ', str(response['error'])) except Exception as error: print(str(error)) max_num_retries += 1 raise RuntimeError('Calling SenseTime failed after retrying for ' f'{max_num_retries} times. Check the logs for ' 'details.') def _stream_chat(self, messages: List[dict], **gen_params) -> str: """Generate completion from a list of templates. Args: messages (List[dict]): a list of prompt dictionaries gen_params: additional generation configuration Returns: str: The generated string. """ def streaming(raw_response): for chunk in raw_response.iter_lines(): if chunk: try: decoded_chunk = chunk.decode('utf-8') # print(f"Decoded chunk: {decoded_chunk}") if decoded_chunk == 'data:[DONE]': # print("Stream ended") break if decoded_chunk.startswith('data:'): json_str = decoded_chunk[5:] chunk_data = json.loads(json_str) if 'data' in chunk_data and 'choices' in chunk_data[ 'data']: choice = chunk_data['data']['choices'][0] if 'delta' in choice: content = choice['delta'] yield content else: print(f'Unexpected format: {decoded_chunk}') except json.JSONDecodeError as e: print(f'JSON parsing error: {e}') except Exception as e: print( f'An error occurred while processing the chunk: {e}' ) assert isinstance(messages, list) header, data = self.generate_request_data( model_type=self.model_type, messages=messages, gen_params=gen_params, json_mode=self.json_mode, ) max_num_retries = 0 while max_num_retries < self.retry: if len(self.invalid_keys) == len(self.keys): raise RuntimeError('All keys have insufficient quota.') # find the next valid key while True: self.key_ctr += 1 if self.key_ctr == len(self.keys): self.key_ctr = 0 if self.keys[self.key_ctr] not in self.invalid_keys: break key = self.keys[self.key_ctr] header['Authorization'] = f'Bearer {key}' response = dict() try: raw_response = requests.post( self.url, headers=header, data=json.dumps(data), proxies=self.proxies, ) return streaming(raw_response) except requests.ConnectionError: print('Got connection error, retrying...') continue except requests.JSONDecodeError: print('JsonDecode error, got', str(raw_response.content)) continue except KeyError: if 'error' in response: if response['error']['code'] == 'rate_limit_exceeded': time.sleep(1) continue elif response['error']['code'] == 'insufficient_quota': self.invalid_keys.add(key) self.logger.warn(f'insufficient_quota key: {key}') continue print('Find error message in response: ', str(response['error'])) except Exception as error: print(str(error)) max_num_retries += 1 raise RuntimeError('Calling SenseTime failed after retrying for ' f'{max_num_retries} times. Check the logs for ' 'details.') def generate_request_data(self, model_type, messages, gen_params, json_mode=False): """ Generates the request data for different model types. Args: model_type (str): The type of the model (e.g., 'sense'). messages (list): The list of messages to be sent to the model. gen_params (dict): The generation parameters. json_mode (bool): Flag to determine if the response format should be JSON. Returns: tuple: A tuple containing the header and the request data. """ # Copy generation parameters to avoid modifying the original dictionary gen_params = gen_params.copy() # Hold out 100 tokens due to potential errors in token calculation max_tokens = min(gen_params.pop('max_new_tokens'), 4096) if max_tokens <= 0: return '', '' # Initialize the header header = { 'content-type': 'application/json', } # Common parameters processing gen_params['max_tokens'] = max_tokens if 'stop_words' in gen_params: gen_params['stop'] = gen_params.pop('stop_words') if 'repetition_penalty' in gen_params: gen_params['frequency_penalty'] = gen_params.pop( 'repetition_penalty') # Model-specific processing data = {} if model_type.lower().startswith('sense'): gen_params.pop('skip_special_tokens', None) gen_params.pop('session_id', None) data = { 'model': model_type, 'messages': messages, 'n': 1, **gen_params } if json_mode: data['response_format'] = {'type': 'json_object'} else: raise NotImplementedError( f'Model type {model_type} is not supported') return header, data def tokenize(self, prompt: str) -> list: """Tokenize the input prompt. Args: prompt (str): Input string. Returns: list: token ids """ import tiktoken self.tiktoken = tiktoken enc = self.tiktoken.encoding_for_model('gpt-4o') return enc.encode(prompt)