import streamlit as st from langchain_groq import ChatGroq from langchain_community.utilities import ArxivAPIWrapper,WikipediaAPIWrapper from langchain_community.tools import ArxivQueryRun,WikipediaQueryRun,DuckDuckGoSearchRun from langchain.agents import initialize_agent,AgentType # from langchain.callbacks import StreamlitCallbackHandler from langchain_community.callbacks.streamlit import StreamlitCallbackHandler import os from dotenv import load_dotenv ## Arxiv and wikipedia Tools arxiv_wrapper=ArxivAPIWrapper(top_k_results=1, doc_content_chars_max=200) arxiv=ArxivQueryRun(api_wrapper=arxiv_wrapper) api_wrapper=WikipediaAPIWrapper(top_k_results=1,doc_content_chars_max=200) wiki=WikipediaQueryRun(api_wrapper=api_wrapper) search=DuckDuckGoSearchRun(name="Search") st.title("🔎 LangChain - Chat with search") """ In this example, we're using `StreamlitCallbackHandler` to display the thoughts and actions of an agent in an interactive Streamlit app. Try more LangChain 🤝 Streamlit Agent examples at [github.com/langchain-ai/streamlit-agent](https://github.com/langchain-ai/streamlit-agent). """ ## Sidebar for settings st.sidebar.title("Settings") api_key=st.sidebar.text_input("Enter your Groq API Key:",type="password") if "messages" not in st.session_state: st.session_state['messages'] = [ {"role":"assisstant","content":"Hi,I'm a chatbot who can search the web. How can I help you?"} ] for msg in st.session_state.messages: st.chat_message(msg["role"]).write(msg['content']) if prompt:=st.chat_input(placeholder="What is machine learning?"): st.session_state.messages.append({"role":"user","content":prompt}) st.chat_message("user").write(prompt) llm=ChatGroq(groq_api_key=api_key,model_name="Llama3-8b-8192",streaming=True) tools=[search,arxiv,wiki] search_agent=initialize_agent(tools,llm,agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,handling_parsing_errors=False) with st.chat_message("assistant"): st_cb=StreamlitCallbackHandler(st.container(),expand_new_thoughts=False) response=search_agent.run(st.session_state.messages,callbacks=[st_cb]) st.session_state.messages.append({'role':'assistant',"content":response}) st.write(response)