Suraj-Yadav
commited on
Commit
β’
f141439
1
Parent(s):
c89b257
Uploading food not food text classifier demo app.py
Browse files- README.md +10 -3
- app.py +97 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +1,19 @@
|
|
1 |
---
|
2 |
title: Food Not Food Text Classifier
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Food Not Food Text Classifier
|
3 |
+
emoji: ππ«π₯
|
4 |
+
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
+
# ππ«π₯ Food Not Food Text Classifier
|
14 |
+
|
15 |
+
Small demo to showcase a text classifier to determine if a sentence is about food or not food.
|
16 |
+
|
17 |
+
DistillBERT model fine-tuned on a small synthetic dataset of 250 generated [Food or Not Food image captions](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
|
18 |
+
|
19 |
+
[Source code notebook](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
|
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 1. Import the required packages
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from typing import Dict
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
huggingface_model_path = "Suraj-Yadav/learn_hf_food_not_food_text_classifier-distilbert-base-uncased"
|
9 |
+
|
10 |
+
# 2. Define function to use our model on given text
|
11 |
+
def food_not_food_classifier(
|
12 |
+
text: Union[str, list],
|
13 |
+
model_path: str,
|
14 |
+
batch_size: int = 32,
|
15 |
+
device: str = None,
|
16 |
+
get_classifier:bool = False
|
17 |
+
) -> Dict[str, float]:
|
18 |
+
"""
|
19 |
+
Classifies whether the given text is related to food or not, returning a dictionary of labels and their scores.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
text (Union[str, list]): The input text or list of texts to classify.
|
23 |
+
model_path (str): The path to the Hugging Face model for classification.
|
24 |
+
batch_size (int): The batch size for processing. Default is 32.
|
25 |
+
device (str): The device to run inference on (e.g., 'cuda', 'cpu'). Default is None (auto-detect best available).
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
Dict[str, float]: A dictionary where the keys are the labels and the values are the classification scores.
|
29 |
+
"""
|
30 |
+
|
31 |
+
if device is None:
|
32 |
+
device = set_device()
|
33 |
+
|
34 |
+
classifier = pipeline(
|
35 |
+
task="text-classification",
|
36 |
+
model=model_path,
|
37 |
+
batch_size=batch_size,
|
38 |
+
device=device,
|
39 |
+
top_k=None # Keep all predictions
|
40 |
+
)
|
41 |
+
|
42 |
+
if get_classifier:
|
43 |
+
return classifier
|
44 |
+
else:
|
45 |
+
|
46 |
+
results = classifier(text) # [[{'label': 'food', 'score': 0.9500328898429871}, {'label': 'not_food', 'score': 0.04996709153056145}]]
|
47 |
+
|
48 |
+
output_dict = {}
|
49 |
+
for output in results[0]:
|
50 |
+
output_dict[output['label']] = output['score']
|
51 |
+
|
52 |
+
return output_dict
|
53 |
+
|
54 |
+
|
55 |
+
def gradio_food_classifier(text: str) -> dict:
|
56 |
+
"""
|
57 |
+
A wrapper function for Gradio to classify text using the classify_food_text function.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
text (str): The input text to classify.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
dict: Classification results as a dictionary of label and score.
|
64 |
+
"""
|
65 |
+
classifier = food_not_food_classifier(text=text,
|
66 |
+
model_path=huggingface_model_path,
|
67 |
+
get_classifier=True)
|
68 |
+
|
69 |
+
results = classifier(text)
|
70 |
+
|
71 |
+
output_dict = {}
|
72 |
+
for output in results[0]:
|
73 |
+
output_dict[output['label']] = output['score']
|
74 |
+
|
75 |
+
return output_dict
|
76 |
+
|
77 |
+
|
78 |
+
# 3. Create a Gradio interface with details about our app
|
79 |
+
description = """
|
80 |
+
A text classifier to determine if a sentence is about food or not food.
|
81 |
+
|
82 |
+
Fine-tuned from [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) on a [small dataset of food and not food text](https://huggingface.co/datasets/mrdbourke/learn_hf_food_not_food_image_captions).
|
83 |
+
|
84 |
+
See [source code](https://github.com/mrdbourke/learn-huggingface/blob/main/notebooks/hugging_face_text_classification_tutorial.ipynb).
|
85 |
+
"""
|
86 |
+
|
87 |
+
demo = gr.Interface(fn=gradio_food_classifier,
|
88 |
+
inputs="text",
|
89 |
+
outputs=gr.Label(num_top_classes=2),
|
90 |
+
title="ππ«π₯ Food or Not Food Text Classifier",
|
91 |
+
description=description,
|
92 |
+
examples=[["I whipped up a fresh batch of code, but it seems to have a syntax error."],
|
93 |
+
["A delicious photo of a plate of scrambled eggs, bacon and toast."]])
|
94 |
+
|
95 |
+
# 4. Launch the interface
|
96 |
+
if __name__ == "__main__":
|
97 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|