Spaces:
Build error
Build error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import nltk
|
5 |
+
import pickle
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.pipeline import make_pipeline
|
8 |
+
import streamlit.components.v1 as components
|
9 |
+
from transformers import pipeline
|
10 |
+
from sklearn.svm import SVC
|
11 |
+
from sklearn.preprocessing import LabelEncoder
|
12 |
+
import pickle
|
13 |
+
import streamlit as st
|
14 |
+
|
15 |
+
|
16 |
+
# Function to load the pre-trained model
|
17 |
+
@st.cache(allow_output_mutation=True)
|
18 |
+
def load_pretrained_model():
|
19 |
+
try:
|
20 |
+
feature_file='tfidf_scorer.pkl'
|
21 |
+
with open(feature_file,'rb') as f:
|
22 |
+
feature_extractor=pickle.load(f)
|
23 |
+
f.close()
|
24 |
+
|
25 |
+
encoder_file='encoder.pkl'
|
26 |
+
with open(encoder_file,'rb') as f:
|
27 |
+
encoder=pickle.load(f)
|
28 |
+
f.close()
|
29 |
+
|
30 |
+
model_file='classifier.pkl'
|
31 |
+
with open(model_file,'rb') as f:
|
32 |
+
model=pickle.load(f)
|
33 |
+
f.close()
|
34 |
+
pipe=pipeline("token-classification",model="hatmimoha/arabic-ner",aggregation_strategy='max')
|
35 |
+
return feature_extractor,encoder,model,pipe
|
36 |
+
except FileNotFoundError:
|
37 |
+
st.error("Pre-trained model not found. Please make sure the model file exists.")
|
38 |
+
st.stop()
|
39 |
+
|
40 |
+
# Streamlit App
|
41 |
+
st.title("Text Classification App")
|
42 |
+
st.write("This app demonstrates text classification using a pre-trained scikit-learn-based machine learning model.")
|
43 |
+
# Information about the app
|
44 |
+
st.sidebar.title("App Information")
|
45 |
+
st.sidebar.info(
|
46 |
+
"""This Streamlit app showcases text classification using a pre-trained scikit-learn-based
|
47 |
+
machine learning model on Arabic texts. The data is sourced is from
|
48 |
+
Arabic news articles organized into 3 balanced categories from www.alkhaleej.ae
|
49 |
+
Labels are categorized in: Medical,Sports,Tech.
|
50 |
+
Enter text in the provided area, and the model will predict the label."""
|
51 |
+
)
|
52 |
+
# Load the pre-trained model
|
53 |
+
tfidf,encode,trained_model,pipeline_obj = load_pretrained_model()
|
54 |
+
|
55 |
+
# User input for text classification
|
56 |
+
user_text = st.text_area("Enter text for classification:")
|
57 |
+
|
58 |
+
# Classify user input
|
59 |
+
if user_text:
|
60 |
+
tokens_new=nltk.wordpunct_tokenize(user_text)
|
61 |
+
tokens_corrected=[i for i in tokens_new if len(i)>1]
|
62 |
+
tfidf_tokens=' '.join(tokens_corrected)
|
63 |
+
|
64 |
+
x_test=tfidf.transform([tfidf_tokens])
|
65 |
+
|
66 |
+
predicted=trained_model.predict(x_test)
|
67 |
+
|
68 |
+
predicted_class=encode.inverse_transform(predicted)[0]
|
69 |
+
|
70 |
+
st.write(f"Predicted Label: {predicted_class}")
|
71 |
+
if st.button("Extract entities"):
|
72 |
+
with st.spinner('Calculating...'):
|
73 |
+
entities=pipeline_obj(user_text)
|
74 |
+
if len(entities)>0:
|
75 |
+
entity_df=pd.DataFrame(entities)
|
76 |
+
st.table(entity_df[["entity_group","word"]])
|
77 |
+
else:
|
78 |
+
st.write("No entities found")
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
"""if st.button("Perform explainability analysis"):
|
84 |
+
:
|
85 |
+
c=make_pipeline(tfidf,trained_model)
|
86 |
+
explainer = LimeTextExplainer(class_names=np.array(["Medical","Sports","Tech,Others"]),random_state=42)
|
87 |
+
exp = explainer.explain_instance(user_text, c.predict_proba, num_features=20, top_labels=3)
|
88 |
+
components.html(exp.as_html(), height=800)
|
89 |
+
#top_labels=exp.available_labels()"""
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|