### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names with open ("class_names.txt", "r") as f: class_names = [food.strip() for food in f.readlines()] ### 2. Model and transforms preparation ### # Create EffNetB2 model effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=101, # len(class_names) would also work ) # Load saved weights effnetb2.load_state_dict( torch.load( f="09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = effnetb2_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode effnetb2.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(effnetb2(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "FoodVision Big 🍕🥩🍣" description = "An EfficientNetB2 feature extractor computer vision model to classify 101 images of food from food101 image dataset." article = "Created as a practice" # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs= gr.Image(sources=["upload"], type='pil'), # what are the inputs? outputs=[gr.Label(num_top_classes=5, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs # Create examples list from "examples/" directory examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch(debug=True)