Sutirtha's picture
Update app.py
e9ef3b4 verified
raw
history blame
6.56 kB
import gradio as gr
from PIL import Image
import numpy as np
import cv2
from lang_sam import LangSAM
from color_matcher import ColorMatcher
from color_matcher.normalizer import Normalizer
import torch
# Load the LangSAM model
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
def extract_mask(image_pil, text_prompt):
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
masks_np = masks[0].cpu().numpy()
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
return mask
def apply_color_matching(source_img_np, ref_img_np):
# Initialize ColorMatcher
cm = ColorMatcher()
# Apply color matching
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl')
# Normalize the result
img_res = Normalizer(img_res).uint8_norm()
return img_res
def process_image(current_image_pil, prompt, replacement_image_pil, color_ref_image_pil, image_history):
# Check if current_image_pil is None
if current_image_pil is None:
return None, "No current image to edit.", image_history, None
# Save current image to history for undo
if image_history is None:
image_history = []
image_history.append(current_image_pil.copy())
# Extract mask
mask = extract_mask(current_image_pil, prompt)
# Check if mask is valid
if mask.sum() == 0:
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
# Proceed with replacement or color matching
current_image_np = np.array(current_image_pil)
mask_3ch = cv2.merge([mask, mask, mask])
result_image_np = current_image_np.copy()
# If replacement image is provided
if replacement_image_pil is not None:
# Resize replacement image to fit the mask area
# Get bounding box of the mask
y_indices, x_indices = np.where(mask > 0)
if y_indices.size == 0 or x_indices.size == 0:
# No mask detected
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
y_min, y_max = y_indices.min(), y_indices.max()
x_min, x_max = x_indices.min(), x_indices.max()
# Extract the region of interest
mask_height = y_max - y_min + 1
mask_width = x_max - x_min + 1
# Resize replacement image to fit mask area
replacement_image_resized = replacement_image_pil.resize((mask_width, mask_height))
replacement_image_np = np.array(replacement_image_resized)
# Create a mask for the ROI
mask_roi = mask[y_min:y_max+1, x_min:x_max+1]
mask_roi_3ch = cv2.merge([mask_roi, mask_roi, mask_roi])
# Replace the masked area with the replacement image
result_image_np[y_min:y_max+1, x_min:x_max+1] = np.where(mask_roi_3ch > 0, replacement_image_np, result_image_np[y_min:y_max+1, x_min:x_max+1])
# If color reference image is provided
if color_ref_image_pil is not None:
# Extract the masked area
masked_region = cv2.bitwise_and(result_image_np, mask_3ch)
# Convert color reference image to numpy
color_ref_image_np = np.array(color_ref_image_pil)
# Apply color matching
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
# Combine the color matched region back into the result image
result_image_np = np.where(mask_3ch > 0, color_matched_region, result_image_np)
# Convert result back to PIL Image
result_image_pil = Image.fromarray(result_image_np)
# Update current_image_pil
current_image_pil = result_image_pil
return current_image_pil, f"Applied changes for prompt: {prompt}", image_history, current_image_pil
def undo(image_history):
if image_history and len(image_history) > 1:
# Pop the last image
image_history.pop()
# Return the previous image
current_image_pil = image_history[-1]
return current_image_pil, image_history, current_image_pil
elif image_history and len(image_history) == 1:
current_image_pil = image_history[0]
return current_image_pil, image_history, current_image_pil
else:
# Cannot undo
return None, [], None
def gradio_interface():
with gr.Blocks() as demo:
# Define the state variables
image_history = gr.State([])
current_image_pil = gr.State(None)
gr.Markdown("## Continuous Image Editing with LangSAM")
with gr.Row():
with gr.Column():
initial_image = gr.Image(type="pil", label="Upload Image")
prompt = gr.Textbox(lines=1, placeholder="Enter prompt for object detection", label="Prompt")
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)")
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)")
apply_button = gr.Button("Apply Changes")
undo_button = gr.Button("Undo")
with gr.Column():
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
status = gr.Textbox(lines=2, interactive=False, label="Status")
def initialize_image(initial_image_pil):
# Initialize image history with the initial image
if initial_image_pil is not None:
image_history = [initial_image_pil]
current_image_pil = initial_image_pil
return current_image_pil, image_history, initial_image_pil
else:
return None, [], None
# When the initial image is uploaded, initialize the image history
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display])
# Apply button click
apply_button.click(fn=process_image,
inputs=[current_image_pil, prompt, replacement_image, color_ref_image, image_history],
outputs=[current_image_pil, status, image_history, current_image_display])
# Undo button click
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
demo.launch(share=True)
# Run the Gradio Interface
if __name__ == "__main__":
gradio_interface()