Updated datasets
Browse files- functions.py +21 -23
functions.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
from datasets import load_dataset
|
@@ -40,34 +39,34 @@ def get_query_url(repo):
|
|
40 |
def get_task_summary(results):
|
41 |
return {
|
42 |
"IFEval": {
|
43 |
-
"dataset_type": "
|
44 |
"dataset_name": "IFEval (0-Shot)",
|
45 |
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
|
46 |
"metric_value": round(results["IFEval"], 2),
|
47 |
-
"dataset_config": None,
|
48 |
-
"dataset_split":
|
49 |
"dataset_revision": None,
|
50 |
"dataset_args": {"num_few_shot": 0},
|
51 |
-
"metric_name": "
|
52 |
},
|
53 |
"BBH": {
|
54 |
-
"dataset_type": "
|
55 |
"dataset_name": "BBH (3-Shot)",
|
56 |
"metric_type": "acc_norm",
|
57 |
"metric_value": round(results["BBH"], 2),
|
58 |
-
"dataset_config": None,
|
59 |
-
"dataset_split":
|
60 |
"dataset_revision": None,
|
61 |
"dataset_args": {"num_few_shot": 3},
|
62 |
"metric_name": "normalized accuracy",
|
63 |
},
|
64 |
"MATH Lvl 5": {
|
65 |
-
"dataset_type": "
|
66 |
"dataset_name": "MATH Lvl 5 (4-Shot)",
|
67 |
"metric_type": "exact_match",
|
68 |
"metric_value": round(results["MATH Lvl 5"], 2),
|
69 |
-
"dataset_config": None,
|
70 |
-
"dataset_split":
|
71 |
"dataset_revision": None,
|
72 |
"dataset_args": {"num_few_shot": 4},
|
73 |
"metric_name": "exact match",
|
@@ -77,8 +76,8 @@ def get_task_summary(results):
|
|
77 |
"dataset_name": "GPQA (0-shot)",
|
78 |
"metric_type": "acc_norm",
|
79 |
"metric_value": round(results["GPQA"], 2),
|
80 |
-
"dataset_config": None,
|
81 |
-
"dataset_split":
|
82 |
"dataset_revision": None,
|
83 |
"dataset_args": {"num_few_shot": 0},
|
84 |
"metric_name": "acc_norm",
|
@@ -88,8 +87,8 @@ def get_task_summary(results):
|
|
88 |
"dataset_name": "MuSR (0-shot)",
|
89 |
"metric_type": "acc_norm",
|
90 |
"metric_value": round(results["MUSR"], 2),
|
91 |
-
"dataset_config": None,
|
92 |
-
"dataset_split": None, #
|
93 |
"dataset_args": {"num_few_shot": 0},
|
94 |
"metric_name": "acc_norm",
|
95 |
},
|
@@ -109,18 +108,17 @@ def get_task_summary(results):
|
|
109 |
def get_eval_results(df, repo):
|
110 |
results = search(df, repo)
|
111 |
task_summary = get_task_summary(results)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
[v["dataset_name"], v["metric_value"]] for v in task_summary.values()
|
116 |
]
|
117 |
|
118 |
-
text = f"""
|
119 |
-
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
120 |
Detailed results can be found [here]({get_details_url(repo)})!
|
121 |
Summarized results can be found [here]({get_contents_url(repo)})!
|
122 |
|
123 |
-
{
|
124 |
"""
|
125 |
return text
|
126 |
|
@@ -175,8 +173,8 @@ def commit(
|
|
175 |
if repo.startswith("https://huggingface.co/"):
|
176 |
try:
|
177 |
repo = RepoUrl(repo).repo_id
|
178 |
-
except Exception:
|
179 |
-
raise gr.Error(f"Not a valid repo id: {str(repo)}")
|
180 |
|
181 |
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
|
182 |
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
from datasets import load_dataset
|
|
|
39 |
def get_task_summary(results):
|
40 |
return {
|
41 |
"IFEval": {
|
42 |
+
"dataset_type": "wis-k/instruction-following-eval",
|
43 |
"dataset_name": "IFEval (0-Shot)",
|
44 |
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
|
45 |
"metric_value": round(results["IFEval"], 2),
|
46 |
+
"dataset_config": None,
|
47 |
+
"dataset_split": "train",
|
48 |
"dataset_revision": None,
|
49 |
"dataset_args": {"num_few_shot": 0},
|
50 |
+
"metric_name": "averaged accuracy",
|
51 |
},
|
52 |
"BBH": {
|
53 |
+
"dataset_type": "SaylorTwift/bbh",
|
54 |
"dataset_name": "BBH (3-Shot)",
|
55 |
"metric_type": "acc_norm",
|
56 |
"metric_value": round(results["BBH"], 2),
|
57 |
+
"dataset_config": None,
|
58 |
+
"dataset_split": "test",
|
59 |
"dataset_revision": None,
|
60 |
"dataset_args": {"num_few_shot": 3},
|
61 |
"metric_name": "normalized accuracy",
|
62 |
},
|
63 |
"MATH Lvl 5": {
|
64 |
+
"dataset_type": "lighteval/MATH-Hard",
|
65 |
"dataset_name": "MATH Lvl 5 (4-Shot)",
|
66 |
"metric_type": "exact_match",
|
67 |
"metric_value": round(results["MATH Lvl 5"], 2),
|
68 |
+
"dataset_config": None,
|
69 |
+
"dataset_split": "test",
|
70 |
"dataset_revision": None,
|
71 |
"dataset_args": {"num_few_shot": 4},
|
72 |
"metric_name": "exact match",
|
|
|
76 |
"dataset_name": "GPQA (0-shot)",
|
77 |
"metric_type": "acc_norm",
|
78 |
"metric_value": round(results["GPQA"], 2),
|
79 |
+
"dataset_config": None,
|
80 |
+
"dataset_split": "train",
|
81 |
"dataset_revision": None,
|
82 |
"dataset_args": {"num_few_shot": 0},
|
83 |
"metric_name": "acc_norm",
|
|
|
87 |
"dataset_name": "MuSR (0-shot)",
|
88 |
"metric_type": "acc_norm",
|
89 |
"metric_value": round(results["MUSR"], 2),
|
90 |
+
"dataset_config": None,
|
91 |
+
"dataset_split": None, # three test splits
|
92 |
"dataset_args": {"num_few_shot": 0},
|
93 |
"metric_name": "acc_norm",
|
94 |
},
|
|
|
108 |
def get_eval_results(df, repo):
|
109 |
results = search(df, repo)
|
110 |
task_summary = get_task_summary(results)
|
111 |
+
table = MarkdownTableWriter()
|
112 |
+
table.headers = ["Metric", "% Value"]
|
113 |
+
table.value_matrix = [["Avg.", round(results["Average β¬οΈ"], 2)]] + [
|
114 |
[v["dataset_name"], v["metric_value"]] for v in task_summary.values()
|
115 |
]
|
116 |
|
117 |
+
text = f"""# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
|
|
118 |
Detailed results can be found [here]({get_details_url(repo)})!
|
119 |
Summarized results can be found [here]({get_contents_url(repo)})!
|
120 |
|
121 |
+
{table.dumps()}
|
122 |
"""
|
123 |
return text
|
124 |
|
|
|
173 |
if repo.startswith("https://huggingface.co/"):
|
174 |
try:
|
175 |
repo = RepoUrl(repo).repo_id
|
176 |
+
except Exception as e:
|
177 |
+
raise gr.Error(f"Not a valid repo id: {str(repo)}") from e
|
178 |
|
179 |
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
|
180 |
|