TDNMdemo / app.py
Your Name
fix requirements
3d3e65e
raw
history blame
6.73 kB
import hashlib
import os
from io import BytesIO
import gradio as gr
import grpc
from PIL import Image
from cachetools import LRUCache
from inference_pb2 import HairSwapRequest, HairSwapResponse
from inference_pb2_grpc import HairSwapServiceStub
from utils.shape_predictor import align_face
def get_bytes(img):
if img is None:
return img
buffered = BytesIO()
img.save(buffered, format="JPEG")
return buffered.getvalue()
def bytes_to_image(image: bytes) -> Image.Image:
image = Image.open(BytesIO(image))
return image
def center_crop(img):
width, height = img.size
side = min(width, height)
left = (width - side) / 2
top = (height - side) / 2
right = (width + side) / 2
bottom = (height + side) / 2
img = img.crop((left, top, right, bottom))
return img
def resize(name):
def resize_inner(img, align):
global align_cache
if name in align:
img_hash = hashlib.md5(get_bytes(img)).hexdigest()
if img_hash not in align_cache:
img = align_face(img, return_tensors=False)[0]
align_cache[img_hash] = img
else:
img = align_cache[img_hash]
elif img.size != (1024, 1024):
img = center_crop(img)
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
return img
return resize_inner
def swap_hair(face, shape, color, blending, poisson_iters, poisson_erosion):
if not face and not shape and not color:
return gr.update(visible=False), gr.update(value="Need to upload a face and at least a shape or color ❗", visible=True)
elif not face:
return gr.update(visible=False), gr.update(value="Need to upload a face ❗", visible=True)
elif not shape and not color:
return gr.update(visible=False), gr.update(value="Need to upload at least a shape or color ❗", visible=True)
face_bytes, shape_bytes, color_bytes = map(lambda item: get_bytes(item), (face, shape, color))
if shape_bytes is None:
shape_bytes = b'face'
if color_bytes is None:
color_bytes = b'shape'
with grpc.insecure_channel(os.environ['SERVER']) as channel:
stub = HairSwapServiceStub(channel)
output: HairSwapResponse = stub.swap(
HairSwapRequest(face=face_bytes, shape=shape_bytes, color=color_bytes, blending=blending,
poisson_iters=poisson_iters, poisson_erosion=poisson_erosion, use_cache=True)
)
output = bytes_to_image(output.image)
return gr.update(value=output, visible=True), gr.update(visible=False)
def get_demo():
with gr.Blocks() as demo:
gr.Markdown("## HairFastGan")
gr.Markdown(
'<div style="display: flex; align-items: center; gap: 10px;">'
'<span>Official HairFastGAN Gradio demo:</span>'
'<a href="https://arxiv.org/abs/2404.01094"><img src="https://img.shields.io/badge/arXiv-2404.01094-b31b1b.svg" height=22.5></a>'
'<a href="https://github.com/AIRI-Institute/HairFastGAN"><img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" height=22.5></a>'
'<a href="https://huggingface.co/AIRI-Institute/HairFastGAN"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md.svg" height=22.5></a>'
'<a href="https://colab.research.google.com/#fileId=https://huggingface.co/AIRI-Institute/HairFastGAN/blob/main/notebooks/HairFast_inference.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=22.5></a>'
'</div>'
)
with gr.Row():
with gr.Column():
source = gr.Image(label="Source photo to try on the hairstyle", type="pil")
with gr.Row():
shape = gr.Image(label="Shape photo with desired hairstyle (optional)", type="pil")
color = gr.Image(label="Color photo with desired hair color (optional)", type="pil")
with gr.Accordion("Advanced Options", open=False):
blending = gr.Radio(["Article", "Alternative_v1", "Alternative_v2"], value='Article',
label="Color Encoder version", info="Selects a model for hair color transfer.")
poisson_iters = gr.Slider(0, 2500, value=0, step=1, label="Poisson iters",
info="The power of blending with the original image, helps to recover more details. Not included in the article, disabled by default.")
poisson_erosion = gr.Slider(1, 100, value=15, step=1, label="Poisson erosion",
info="Smooths out the blending area.")
align = gr.CheckboxGroup(["Face", "Shape", "Color"], value=["Face", "Shape", "Color"],
label="Image cropping [recommended]",
info="Selects which images to crop by face")
btn = gr.Button("Get the haircut")
with gr.Column():
output = gr.Image(label="Your result")
error_message = gr.Textbox(label="⚠️ Error ⚠️", visible=False, elem_classes="error-message")
gr.Examples(examples=[["input/0.png", "input/1.png", "input/2.png"], ["input/6.png", "input/7.png", None],
["input/10.jpg", None, "input/11.jpg"]],
inputs=[source, shape, color], outputs=output)
source.upload(fn=resize('Face'), inputs=[source, align], outputs=source)
shape.upload(fn=resize('Shape'), inputs=[shape, align], outputs=shape)
color.upload(fn=resize('Color'), inputs=[color, align], outputs=color)
btn.click(fn=swap_hair, inputs=[source, shape, color, blending, poisson_iters, poisson_erosion],
outputs=[output, error_message])
gr.Markdown('''To cite the paper by the authors
```
@article{nikolaev2024hairfastgan,
title={HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach},
author={Nikolaev, Maxim and Kuznetsov, Mikhail and Vetrov, Dmitry and Alanov, Aibek},
journal={arXiv preprint arXiv:2404.01094},
year={2024}
}
```
''')
return demo
if __name__ == '__main__':
align_cache = LRUCache(maxsize=10)
demo = get_demo()
demo.launch(server_name="0.0.0.0", server_port=7860)