|
import hashlib
|
|
import os
|
|
from io import BytesIO
|
|
|
|
import gradio as gr
|
|
import grpc
|
|
from PIL import Image
|
|
from cachetools import LRUCache
|
|
|
|
from inference_pb2 import HairSwapRequest, HairSwapResponse
|
|
from inference_pb2_grpc import HairSwapServiceStub
|
|
from utils.shape_predictor import align_face
|
|
|
|
|
|
def get_bytes(img):
|
|
if img is None:
|
|
return img
|
|
|
|
buffered = BytesIO()
|
|
img.save(buffered, format="JPEG")
|
|
return buffered.getvalue()
|
|
|
|
|
|
def bytes_to_image(image: bytes) -> Image.Image:
|
|
image = Image.open(BytesIO(image))
|
|
return image
|
|
|
|
|
|
def center_crop(img):
|
|
width, height = img.size
|
|
side = min(width, height)
|
|
|
|
left = (width - side) / 2
|
|
top = (height - side) / 2
|
|
right = (width + side) / 2
|
|
bottom = (height + side) / 2
|
|
|
|
img = img.crop((left, top, right, bottom))
|
|
return img
|
|
|
|
|
|
def resize(name):
|
|
def resize_inner(img, align):
|
|
global align_cache
|
|
|
|
if name in align:
|
|
img_hash = hashlib.md5(get_bytes(img)).hexdigest()
|
|
|
|
if img_hash not in align_cache:
|
|
img = align_face(img, return_tensors=False)[0]
|
|
align_cache[img_hash] = img
|
|
else:
|
|
img = align_cache[img_hash]
|
|
|
|
elif img.size != (1024, 1024):
|
|
img = center_crop(img)
|
|
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
|
|
|
return img
|
|
|
|
return resize_inner
|
|
|
|
|
|
def swap_hair(face, shape, color, blending, poisson_iters, poisson_erosion):
|
|
if not face and not shape and not color:
|
|
return gr.update(visible=False), gr.update(value="Need to upload a face and at least a shape or color ❗", visible=True)
|
|
elif not face:
|
|
return gr.update(visible=False), gr.update(value="Need to upload a face ❗", visible=True)
|
|
elif not shape and not color:
|
|
return gr.update(visible=False), gr.update(value="Need to upload at least a shape or color ❗", visible=True)
|
|
|
|
face_bytes, shape_bytes, color_bytes = map(lambda item: get_bytes(item), (face, shape, color))
|
|
|
|
if shape_bytes is None:
|
|
shape_bytes = b'face'
|
|
if color_bytes is None:
|
|
color_bytes = b'shape'
|
|
|
|
with grpc.insecure_channel(os.environ['SERVER']) as channel:
|
|
stub = HairSwapServiceStub(channel)
|
|
|
|
output: HairSwapResponse = stub.swap(
|
|
HairSwapRequest(face=face_bytes, shape=shape_bytes, color=color_bytes, blending=blending,
|
|
poisson_iters=poisson_iters, poisson_erosion=poisson_erosion, use_cache=True)
|
|
)
|
|
|
|
output = bytes_to_image(output.image)
|
|
return gr.update(value=output, visible=True), gr.update(visible=False)
|
|
|
|
|
|
def get_demo():
|
|
with gr.Blocks() as demo:
|
|
gr.Markdown("## HairFastGan")
|
|
gr.Markdown(
|
|
'<div style="display: flex; align-items: center; gap: 10px;">'
|
|
'<span>Official HairFastGAN Gradio demo:</span>'
|
|
'<a href="https://arxiv.org/abs/2404.01094"><img src="https://img.shields.io/badge/arXiv-2404.01094-b31b1b.svg" height=22.5></a>'
|
|
'<a href="https://github.com/AIRI-Institute/HairFastGAN"><img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" height=22.5></a>'
|
|
'<a href="https://huggingface.co/AIRI-Institute/HairFastGAN"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md.svg" height=22.5></a>'
|
|
'<a href="https://colab.research.google.com/#fileId=https://huggingface.co/AIRI-Institute/HairFastGAN/blob/main/notebooks/HairFast_inference.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" height=22.5></a>'
|
|
'</div>'
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
source = gr.Image(label="Source photo to try on the hairstyle", type="pil")
|
|
with gr.Row():
|
|
shape = gr.Image(label="Shape photo with desired hairstyle (optional)", type="pil")
|
|
color = gr.Image(label="Color photo with desired hair color (optional)", type="pil")
|
|
with gr.Accordion("Advanced Options", open=False):
|
|
blending = gr.Radio(["Article", "Alternative_v1", "Alternative_v2"], value='Article',
|
|
label="Color Encoder version", info="Selects a model for hair color transfer.")
|
|
poisson_iters = gr.Slider(0, 2500, value=0, step=1, label="Poisson iters",
|
|
info="The power of blending with the original image, helps to recover more details. Not included in the article, disabled by default.")
|
|
poisson_erosion = gr.Slider(1, 100, value=15, step=1, label="Poisson erosion",
|
|
info="Smooths out the blending area.")
|
|
align = gr.CheckboxGroup(["Face", "Shape", "Color"], value=["Face", "Shape", "Color"],
|
|
label="Image cropping [recommended]",
|
|
info="Selects which images to crop by face")
|
|
btn = gr.Button("Get the haircut")
|
|
with gr.Column():
|
|
output = gr.Image(label="Your result")
|
|
error_message = gr.Textbox(label="⚠️ Error ⚠️", visible=False, elem_classes="error-message")
|
|
|
|
gr.Examples(examples=[["input/0.png", "input/1.png", "input/2.png"], ["input/6.png", "input/7.png", None],
|
|
["input/10.jpg", None, "input/11.jpg"]],
|
|
inputs=[source, shape, color], outputs=output)
|
|
|
|
source.upload(fn=resize('Face'), inputs=[source, align], outputs=source)
|
|
shape.upload(fn=resize('Shape'), inputs=[shape, align], outputs=shape)
|
|
color.upload(fn=resize('Color'), inputs=[color, align], outputs=color)
|
|
|
|
btn.click(fn=swap_hair, inputs=[source, shape, color, blending, poisson_iters, poisson_erosion],
|
|
outputs=[output, error_message])
|
|
|
|
gr.Markdown('''To cite the paper by the authors
|
|
```
|
|
@article{nikolaev2024hairfastgan,
|
|
title={HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach},
|
|
author={Nikolaev, Maxim and Kuznetsov, Mikhail and Vetrov, Dmitry and Alanov, Aibek},
|
|
journal={arXiv preprint arXiv:2404.01094},
|
|
year={2024}
|
|
}
|
|
```
|
|
''')
|
|
return demo
|
|
|
|
|
|
if __name__ == '__main__':
|
|
align_cache = LRUCache(maxsize=10)
|
|
demo = get_demo()
|
|
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|