File size: 7,170 Bytes
89dc200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- encoding: utf-8 -*-
'''
@File    :   itersr_sampling.py
@Time    :   2022/03/03 14:24:28
@Author  :   Ming Ding 
@Contact :   dm18@mails.tsinghua.edu.cn
'''

# here put the import lib
import os
import sys
import math
import random
import numpy as np

import torch
import torch.nn.functional as F
from icetk import icetk as tokenizer

def top_k_logits_(logits, top_k=0, filter_value=-float('Inf')):
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    logits[indices_to_remove] = filter_value     
    return logits

# class IterativeEntfilterStrategy:
#     def __init__(self, invalid_slices=[], temperature=1., topk=10):
#         self.invalid_slices = invalid_slices
#         self.temperature = temperature
#         self.topk = topk        
#         self.cluster_labels = torch.tensor(np.load('cluster_label.npy'), device='cuda', dtype=torch.long)


#     def forward(self, logits_, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
#         # In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
#         if temperature is None:
#             temperature = self.temperature 
            
#         logits = logits_.float() / temperature
#         for invalid_slice in self.invalid_slices:
#             logits[..., invalid_slice] = -float('Inf')
#         logits = logits.view(-1, logits.shape[-1])
        
#         rprobs = F.softmax(logits.float(), dim=-1)
#         c = self.cluster_labels.expand(*rprobs.shape)
#         cprobs = torch.zeros(logits.shape[0], 500, device=logits.device).scatter_add_(1, c, rprobs)
    
#         best_scores, best_clusters = cprobs.topk(self.topk)
#         bz = logits.shape[0]
#         best_scores = best_scores / best_scores.sum(dim=-1, keepdim=True)
#         sampled_ids = torch.multinomial(best_scores, num_samples=1)
#         selected_clusters = torch.gather(best_clusters, dim=1, index=sampled_ids)
#         selected_mask = (self.cluster_labels.unsqueeze(0).expand(bz, -1) != selected_clusters) # cluster_labels [1, 20000] \in [0,500)
#         logits[selected_mask] = -65504
#         # for i in range(bz):
#         #     selected_cluster = best_clusters[i][torch.multinomial(best_scores[i] / best_scores[i].sum(), num_samples=1)]
#         #     logits[i, self.cluster_labels != selected_cluster] = -65504
            
#         # logits = top_k_logits(logits, self.topk, self.top_p)
#         probs = F.softmax(logits.float(), dim=-1)  # float is essetial, due to a bug in Pytorch
#         pred = torch.multinomial(probs, num_samples=1).view(*logits_.shape[:2])
        
#         assert tokens.shape[1] == pred.shape[1]
#         tokens = pred
#         return tokens

class IterativeEntfilterStrategy:
    def __init__(self, invalid_slices=[], temperature=1., topk=10):
        self.invalid_slices = invalid_slices
        self.temperature = temperature
        self.topk = topk

    def forward(self, logits, tokens, temperature=None, entfilter=None, filter_topk=5, temperature2=None):
        # In interative strategy, logits are of shape [batch_size, seq_length, hidden_size]
        if temperature is None:
            temperature = self.temperature 
        # check entropy filter
        # if entfilter is not None:
        #     assert temperature2 is not None
        #     topraw = (torch.topk(logits, filter_topk, dim=-1)[0]).softmax(dim=-1)
        #     ent = -(topraw * topraw.log()).sum(dim=-1) # [batch_size, seq_length]
        #     temperature = torch.tensor([[[temperature - temperature2]]], device=logits.device).expand(*logits.shape[:2], 1) * (ent > entfilter).unsqueeze(-1) + temperature2
            
        logits = logits.float() / temperature
        for invalid_slice in self.invalid_slices:
            logits[..., invalid_slice] = -float('Inf')
        
        # debiased topk
        # probs = F.softmax(logits, dim=-1)
        # tk_value, tk_idx = torch.topk(probs, self.topk, dim=-1)
        # pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1)
        # edge_idx = tk_idx[:, :, -1:]
        # edge_value = tk_value[:, :, -1:]
        # edge_mask = probs.gather(dim=-1, index=pred) < edge_value
        # pred[edge_mask] = edge_idx[edge_mask] # replace outliers as the "filter_topk"-th token
        # pred.squeeze_(-1) # [batch_size, seq_length]
        
        top_k_logits_(logits, self.topk)
        probs = F.softmax(logits, dim=-1)
        pred = torch.multinomial(probs.view(-1, logits.shape[-1]), num_samples=1).view(*logits.shape[:2], 1)
        pred.squeeze_(-1)
        
        assert tokens.shape[1] == pred.shape[1]
        tokens = pred
        return tokens

def filling_sequence_itersr(
        model, 
        seq0,
        seq1, 
        warmup_steps=3,
        block_hw=(4, 4),
        strategy=IterativeEntfilterStrategy(topk=10),
        ):
    '''
        seq: [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1]
            4095 {layout[2]} final_token.
        Attention:
        The sampling temperature are changing, temporally we hard code them here.
        The temperature in the strategy is not used.
    '''
    assert hasattr(model, 'layout')
    layout = model.layout
    
    device = seq0.device
    # concat and pad sequences
    batch_size = seq0.shape[0]
    n_pad = layout[0] - seq0.shape[1]
    assert n_pad >= 0, "You should truncate long input before filling."
    seq = torch.cat((
        torch.tensor([0]*n_pad, device=device, dtype=seq0.dtype)
            .unsqueeze(0).expand(batch_size, n_pad),
        seq0, seq1), dim=1) # [b, layout[-1]+1]
    assert seq.shape[1] == layout[-1]

    # build initial tokens, attention_mask, and position_ids
    tokens = seq.clone()
    attention_mask = torch.ones(layout[0]).to(device)
    attention_mask[:n_pad] = 0
    attention_mask = attention_mask.unsqueeze(0).type_as(next(model.parameters())) # if fp16
    position_ids = torch.cat((
        torch.zeros(n_pad, dtype=torch.long),
        torch.arange(0, layout[0] - n_pad), 
        torch.arange(1024, 1024+layout[1]-layout[0]))).to(device)
    log_attention_weights = torch.zeros(layout[0], device=device).type_as(next(model.parameters()))
    log_attention_weights[n_pad:layout[0]] = 0.
    log_attention_weights = log_attention_weights.unsqueeze(0)

    # prepare for interation
    unfixed = (tokens == tokenizer['<start_of_image>']) 
    ll, rr = block_hw
    edge_len = int(math.sqrt(layout[-1] - layout[-2]) + 1e-4)
    num_steps = 1
    # interative refining
    
    # unfixed[..., -(layout[-1] - layout[-2]):].view(
    #     batch_size, edge_len//ll, ll, edge_len//rr, rr)[:, :, :, :, -1] = False
    
    
    ret = []
    # ret.append(tokens[:, layout[-2]:-1].clone())
    for step_cnt in range(1, num_steps+1):
        logits, *_dump = model(tokens, position_ids, attention_mask, log_attention_weights=log_attention_weights)
        real_temp = 1.
        new_tokens = strategy.forward(logits, tokens, real_temp)
        tokens[unfixed] = new_tokens[unfixed]
                
        ret.append(tokens[:, layout[-2]:].clone())
    return torch.cat(ret, dim=0)