# -*- encoding: utf-8 -*- ''' @File : itersr_model.py @Time : 2021/10/02 01:36:32 @Author : Ming Ding @Contact : dm18@mails.tsinghua.edu.cn ''' # here put the import lib import os import sys import math import random import torch import torch.nn.functional as F from SwissArmyTransformer.model.base_model import BaseModel, BaseMixin from SwissArmyTransformer.mpu.utils import sqrt from deepspeed.runtime.activation_checkpointing.checkpointing import get_cuda_rng_tracker from SwissArmyTransformer.mpu import ColumnParallelLinear, RowParallelLinear from SwissArmyTransformer.model.transformer import unscaled_init_method, split_tensor_along_last_dim class PositionEmbeddingMixin(BaseMixin): def __init__(self, additional_sequence_length, hidden_size, init_method_std=0.02, reinit_slice=slice(512, 512+400) ): super(PositionEmbeddingMixin, self).__init__() self.reinit_slice = reinit_slice self.position_embeddings = torch.nn.Embedding(additional_sequence_length, hidden_size) torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std) def reinit(self, parent_model=None): old_weights = self.transformer.position_embeddings.weight.data[self.reinit_slice] old_len, hidden_size = old_weights.shape assert hidden_size == self.position_embeddings.weight.shape[-1] old_edge, new_edge = sqrt(old_len), sqrt(self.position_embeddings.weight.shape[-2]) assert new_edge % old_edge == 0 self.position_embeddings.weight.data.view(new_edge // old_edge, old_edge, new_edge // old_edge, old_edge, hidden_size).copy_(old_weights.view(1, old_edge, 1, old_edge, hidden_size)) class ItersrModel(BaseModel): def __init__(self, args, transformer=None): super().__init__(args, transformer=transformer) self.original_sequence_length = args.max_sequence_length additional_seqlen = args.new_sequence_length - args.max_sequence_length self.add_mixin('extra_position_embedding', PositionEmbeddingMixin( additional_seqlen, args.hidden_size )) # self.add_mixin('attention_plus', AttentionMixin( # num_layers=args.num_layers, # hidden_size=args.hidden_size # )) self.layout = args.layout # [PAD]... [ROI1] text ... [BOI1] {layout[0]} 1024 {layout[1]} [EOI1] 4095 {layout[2]} self.kernel_size = args.kernel_size self.kernel_size2 = args.kernel_size2 self.log_attention_weights = None def position_embedding_forward(self, position_ids, **kw_args): position = position_ids[..., :self.layout[0]] position_plus = position_ids[..., self.layout[0]:] - self.original_sequence_length position_embeddings = torch.cat( ( self.transformer.position_embeddings(position), self.get_mixin('extra_position_embedding').position_embeddings(position_plus) ), dim=-2 ) return position_embeddings def attention_forward(self, hidden_states, mask, layer_id=None, log_attention_weights=None, **kw_args): attn_module = self.transformer.layers[layer_id].attention # base model qkv mixed_raw_layer = attn_module.query_key_value(hidden_states) q0, k0, v0 = split_tensor_along_last_dim(mixed_raw_layer[:, :self.layout[0]], 3) # cuda2d model qkv q1, k1, v1 = split_tensor_along_last_dim(mixed_raw_layer[:, self.layout[0]:], 3) dropout_fn = attn_module.attention_dropout if self.training else None # cuda2d attention context_layer = sparse_attention_2d_text( q0, k0, v0, q1, k1, v1, mask, n_head=attn_module.num_attention_heads_per_partition, text_len=self.layout[0], kernel_size=self.kernel_size, attention_dropout=dropout_fn, log_attention_weights=log_attention_weights, ) output = attn_module.dense(context_layer) return output def final_forward(self, logits, **kwargs): logits_parallel = logits logits_parallel = torch.nn.functional.linear(logits_parallel, self.transformer.word_embeddings.weight[:20000]).float() # logits_parallel = torch.nn.functional.linear(logits_parallel, self.transformer.word_embeddings.weight[:20000]) return logits_parallel # def disable_untrainable_params(self): # self.transformer.requires_grad_(False) @classmethod def add_model_specific_args(cls, parser): group = parser.add_argument_group('Cuda2dModel', 'cuda2d model configurations') group.add_argument("--kernel-size", type=int, default=5) group.add_argument("--kernel-size2", type=int, default=5) group.add_argument("--layout", type=str, default='16,3616') group.add_argument("--new-sequence-length", type=int, default=4096) return parser def sparse_attention_2d_text(q0, k0, v0, q1, k1, v1, attention_mask, n_head, text_len, kernel_size=9, attention_dropout=None, log_attention_weights = None, **kwargs): ''' q0, k0, v0: [batch_size, 16, hidden_size] q1, k1, v1: [batch_size, 3600, hidden_size] n_head: int attention_mask: [batch_size, 16] ''' from SwissArmyTransformer.ops.local_attention_function import f_similar, f_weighting b, s0, h0 = q0.shape b, s1, h1 = q1.shape h, l1 = h0 // n_head, sqrt(s1) assert attention_mask.shape[-1] == s0, f"Mask Shape: {attention_mask.shape}" q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3) v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3) k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1) # standard attention for level 0 attention_scores = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T) attention_scores = torch.mul(attention_scores, attention_mask) - \ 10000.0 * (1.0 - attention_mask) attention_probs0 = F.softmax(attention_scores, dim=-1) # local attention for level 1 q1 = (q1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1) / math.sqrt(h1//n_head)).contiguous().view(b*n_head, h1//n_head, l1, l1) k1 = k1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1) v1 = v1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1) scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, False) # cross attention scores_1_to_0 = torch.matmul(q1.view(b, n_head, h, s1).transpose(-1, -2), k0T) if log_attention_weights is not None: scores_1_to_0 += log_attention_weights scores_1_to_0 = torch.mul(scores_1_to_0, attention_mask) - \ 10000.0 * (1.0 - attention_mask) scores_1 = torch.cat( ( scores_1_to_0.view(b*n_head, s1, s0), scores_1_to_1.view(b*n_head, -1, scores_1_to_1.shape[3]) ), dim=-1) attention_probs1 = F.softmax(scores_1, dim=-1) if attention_dropout is not None: with get_cuda_rng_tracker().fork(): attention_probs1 = attention_dropout(attention_probs1) # weighting for level 0 context0 = torch.matmul(attention_probs0, v0) # [b, n_head, s0, h] # weighting for level 1 probs_1_to_1 = attention_probs1[:, :, -scores_1_to_1.shape[3]:].view_as(scores_1_to_1) context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, False) context1 = context1_to_1.view(b, n_head, h, l1**2) # weighting for cross attention probs_1_to_0 = attention_probs1[:, :, :scores_1_to_0.shape[3]].view(b, n_head, -1, scores_1_to_0.shape[3]) context1_to_0 = torch.matmul(probs_1_to_0, v0) context1 = context1.transpose(-1, -2) + context1_to_0 output = torch.cat((context0, context1), dim=2).transpose(1, 2).reshape(b, s0+s1, h0) return output def sparse_attention_2d_notext(q0, k0, v0, q1, k1, v1, attention_mask, n_head, text_len, kernel_size=9, attention_dropout=None, log_attention_weights = None, **kwargs): ''' q0, k0, v0: [batch_size, 16, hidden_size] q1, k1, v1: [batch_size, 3600, hidden_size] n_head: int attention_mask: [batch_size, 16] ''' from SwissArmyTransformer.mpu.local_attention_function import f_similar, f_weighting b, s0, h0 = q0.shape b, s1, h1 = q1.shape h, l1 = h0 // n_head, sqrt(s1) assert len(attention_mask.shape) == 4 and attention_mask.shape[-1] == s0, f"Mask Shape: {attention_mask.shape}" q0 = q0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3) v0 = v0.reshape(b, s0, n_head, h).permute(0, 2, 1, 3) k0T = k0.reshape(b, s0, n_head, h).permute(0, 2, 3, 1) # standard attention for level 0 attention_scores = torch.matmul(q0 / math.sqrt(q0.shape[-1]), k0T) attention_scores = torch.mul(attention_scores, attention_mask) - \ 10000.0 * (1.0 - attention_mask) attention_probs0 = F.softmax(attention_scores, dim=-1) # local attention for level 1 q1 = (q1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1) / math.sqrt(h1//n_head)).contiguous().view(b*n_head, h1//n_head, l1, l1) k1 = k1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1) v1 = v1.view(b, s1, n_head, h1 // n_head).permute(0, 2, 3, 1).contiguous().view(b*n_head, h1//n_head, l1, l1) scores_1_to_1 = f_similar(q1, k1, kernel_size*2-1, kernel_size, False) attention_probs1 = F.softmax(scores_1_to_1, dim=-1) if attention_dropout is not None: with get_cuda_rng_tracker().fork(): attention_probs1 = attention_dropout(attention_probs1) # weighting for level 0 context0 = torch.matmul(attention_probs0, v0) # [b, n_head, s0, h] # weighting for level 1 probs_1_to_1 = attention_probs1 context1_to_1 = f_weighting(v1, probs_1_to_1.contiguous(), kernel_size*2-1, kernel_size, False) context1 = context1_to_1.view(b, n_head, h, l1**2) # weighting for cross attention context1 = context1.transpose(-1, -2) output = torch.cat((context0, context1), dim=2).transpose(1, 2).reshape(b, s0+s1, h0) return output