Update app.py
Browse files
app.py
CHANGED
@@ -265,43 +265,43 @@ elif page == "LeaderBoard":
|
|
265 |
"Spearman (Non-Factoid QA)": [],
|
266 |
}
|
267 |
|
268 |
-
TeamId = ["baseline", "baseline", "baseline", "baseline", 'ISLab', 'ISLab', 'ISLab', 'ISLab']
|
269 |
-
Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o", 'gpt4o-mini-baseline', 'gpt4o-mini-baseline2', 'llama3-1-baseline', 'llama3-1-baseline2']
|
270 |
|
271 |
# teamId 唯一标识码
|
272 |
DG = {
|
273 |
"TeamId": TeamId,
|
274 |
"Methods": Methods,
|
275 |
-
"Accuracy": [0.5806, 0.5483, 0.6001, 0.6472, 0, 0, 0, 0],
|
276 |
-
"Kendall's Tau": [0.3243, 0.1739, 0.3042, 0.4167, 0, 0, 0, 0],
|
277 |
-
"Spearman": [0.3505, 0.1857, 0.3264, 0.4512, 0, 0, 0, 0]
|
278 |
}
|
279 |
df1 = pd.DataFrame(DG)
|
280 |
|
281 |
TE = {
|
282 |
"TeamId": TeamId,
|
283 |
"Methods": Methods,
|
284 |
-
"Accuracy": [0.5107, 0.5050, 0.5461, 0.5581, 0, 0, 0, 0],
|
285 |
-
"Kendall's Tau": [0.1281, 0.0635, 0.2716, 0.3864, 0, 0, 0, 0],
|
286 |
-
"Spearman": [0.1352, 0.0667, 0.2867, 0.4157, 0, 0, 0, 0]
|
287 |
}
|
288 |
df2 = pd.DataFrame(TE)
|
289 |
|
290 |
SG = {
|
291 |
"TeamId": TeamId,
|
292 |
"Methods": Methods,
|
293 |
-
"Accuracy": [0.6504, 0.6014, 0.7162, 0.7441, 0.7684735750360749, 0.7659274997877937, 0.7702904570919278, 0.7707237554112554],
|
294 |
-
"Kendall's Tau": [0.3957, 0.2688, 0.5092, 0.5001, 0.5139446977332496, 0.5635917219315821, 0.5789961063044075, 0.5704551232357526],
|
295 |
-
"Spearman": [0.4188, 0.2817, 0.5403, 0.5405, 0.5610788011671747, 0.6164421350125108, 0.6242002118163157, 0.6148419886082258],
|
296 |
}
|
297 |
df3 = pd.DataFrame(SG)
|
298 |
|
299 |
NFQA = {
|
300 |
"TeamId": TeamId,
|
301 |
"Methods": Methods,
|
302 |
-
"Accuracy": [0.5935, 0.5817, 0.7000, 0.7203, 0, 0, 0, 0],
|
303 |
-
"Kendall's Tau": [0.2332, 0.2389, 0.4440, 0.4235, 0, 0, 0, 0],
|
304 |
-
"Spearman": [0.2443, 0.2492, 0.4630, 0.4511, 0, 0, 0, 0]
|
305 |
}
|
306 |
df4 = pd.DataFrame(NFQA)
|
307 |
|
|
|
265 |
"Spearman (Non-Factoid QA)": [],
|
266 |
}
|
267 |
|
268 |
+
TeamId = ["baseline", "baseline", "baseline", "baseline", 'ISLab', 'ISLab', 'ISLab', 'ISLab', 'ISLab']
|
269 |
+
Methods = ["chatglm3-6b", "baichuan2-13b", "chatglm-pro", "gpt-4o", 'gpt4o-mini-baseline', 'gpt4o-mini-baseline2', 'llama3-1-baseline', 'llama3-1-baseline2', 'short -test']
|
270 |
|
271 |
# teamId 唯一标识码
|
272 |
DG = {
|
273 |
"TeamId": TeamId,
|
274 |
"Methods": Methods,
|
275 |
+
"Accuracy": [0.5806, 0.5483, 0.6001, 0.6472, 0, 0, 0, 0, 0],
|
276 |
+
"Kendall's Tau": [0.3243, 0.1739, 0.3042, 0.4167, 0, 0, 0, 0, 0],
|
277 |
+
"Spearman": [0.3505, 0.1857, 0.3264, 0.4512, 0, 0, 0, 0, 0]
|
278 |
}
|
279 |
df1 = pd.DataFrame(DG)
|
280 |
|
281 |
TE = {
|
282 |
"TeamId": TeamId,
|
283 |
"Methods": Methods,
|
284 |
+
"Accuracy": [0.5107, 0.5050, 0.5461, 0.5581, 0, 0, 0, 0, 0],
|
285 |
+
"Kendall's Tau": [0.1281, 0.0635, 0.2716, 0.3864, 0, 0, 0, 0, 0],
|
286 |
+
"Spearman": [0.1352, 0.0667, 0.2867, 0.4157, 0, 0, 0, 0, 0]
|
287 |
}
|
288 |
df2 = pd.DataFrame(TE)
|
289 |
|
290 |
SG = {
|
291 |
"TeamId": TeamId,
|
292 |
"Methods": Methods,
|
293 |
+
"Accuracy": [0.6504, 0.6014, 0.7162, 0.7441, 0.7684735750360749, 0.7659274997877937, 0.7702904570919278, 0.7707237554112554, 0.7171193287921227],
|
294 |
+
"Kendall's Tau": [0.3957, 0.2688, 0.5092, 0.5001, 0.5139446977332496, 0.5635917219315821, 0.5789961063044075, 0.5704551232357526, 0.5678532047471645],
|
295 |
+
"Spearman": [0.4188, 0.2817, 0.5403, 0.5405, 0.5610788011671747, 0.6164421350125108, 0.6242002118163157, 0.6148419886082258, 0.6019919123404138],
|
296 |
}
|
297 |
df3 = pd.DataFrame(SG)
|
298 |
|
299 |
NFQA = {
|
300 |
"TeamId": TeamId,
|
301 |
"Methods": Methods,
|
302 |
+
"Accuracy": [0.5935, 0.5817, 0.7000, 0.7203, 0, 0, 0, 0, 0],
|
303 |
+
"Kendall's Tau": [0.2332, 0.2389, 0.4440, 0.4235, 0, 0, 0, 0, 0],
|
304 |
+
"Spearman": [0.2443, 0.2492, 0.4630, 0.4511, 0, 0, 0, 0, 0]
|
305 |
}
|
306 |
df4 = pd.DataFrame(NFQA)
|
307 |
|