File size: 7,708 Bytes
d9c19b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn

from transformers import AutoConfig, AutoModelForCausalLM, \
                         LlamaConfig, LlamaModel, LlamaForCausalLM

from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput

from oryx.model.oryx_arch import OryxMetaModel, OryxMetaForCausalLM


class OryxConfig(LlamaConfig):
    model_type = "oryx_llama"


class OryxLlamaModel(OryxMetaModel, LlamaModel):
    config_class = OryxConfig

    def __init__(self, config: LlamaConfig):
        super(OryxLlamaModel, self).__init__(config)


class OryxLlamaForCausalLM(LlamaForCausalLM, OryxMetaForCausalLM):
    config_class = OryxConfig

    def __init__(self, config):
        LlamaForCausalLM.__init__(self, config)
        self.model = OryxLlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        images_highres: Optional[List[torch.FloatTensor]] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        modalities: Optional[List[str]] = ["image"],
    ) -> Union[Tuple, CausalLMOutputWithPast]:


        if inputs_embeds is None:
            (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images,
                modalities, image_sizes, images_highres)

        if labels is None:
            return super().forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict
            )
        else:
            return self.forward_llm_efficient(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict
            )
    
    def forward_llm_efficient(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict):
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_dim = hidden_states.size(-1)
        shift_labels = labels[..., 1:].contiguous().reshape(-1)
        shift_hidden_states = hidden_states[..., :-1, :].contiguous().reshape(-1, hidden_dim)
        assert shift_labels.size(0) == shift_hidden_states.size(0)
        mask = shift_labels > -1
        seen_tokens = mask.float().sum().item()
        if not seen_tokens > 0:
            logits = self.lm_head(shift_hidden_states[0:2])
            loss = logits.sum() * 0
            print("No tokens seen")
            print(shift_labels)
        else:
            shift_labels = shift_labels[mask]
            shift_hidden_states = shift_hidden_states[mask, :]
            logits = self.lm_head(shift_hidden_states)
            logits = logits.float()
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(logits, shift_labels)
        

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        modalities = kwargs.pop("modalities", None)
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                modalities,
                image_sizes=image_sizes
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
                                      inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            inputs['images'] = images
        if image_sizes is not None:
            inputs['image_sizes'] = image_sizes
        return inputs

if OryxConfig.model_type == "oryx":
    OryxConfig.model_type = "oryx_llama" # directly set to Oryx_dev to avoid conflict with HF's Oryx
    
AutoConfig.register("oryx_llama", OryxConfig)
AutoModelForCausalLM.register(OryxConfig, OryxLlamaForCausalLM)