Oryx / oryx /mm_utils.py
THUdyh's picture
update space
d9c19b7 verified
raw
history blame
8.91 kB
from PIL import Image
from io import BytesIO
import base64
import math
import ast
import torch
from transformers import StoppingCriteria
from oryx.constants import IMAGE_TOKEN_INDEX
import os
video_base = 0
video_ps = 64
highres_base = 0
highres_ps = 32
MAXRES = 1536
MINRES = 0
VIDEO_MAXRES = 480
VIDEO_MINRES = 288
LOWRES_RESIZE = (384,32)
PAD2STRIDE=False
def pad_image(image, target_resolution, value=0):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new('RGB', (target_width, target_height), (value, value, value))
paste_x = (target_width - original_width) // 2
paste_y = (target_height - original_height) // 2
new_image.paste(image, (paste_x, paste_y))
return new_image
def resize_images(image, patch_size=14, base_size=896):
h, w = image.size
if base_size == 0:
if h * w > MAXRES * MAXRES:
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
scale = MAXRES * MAXRES / (h * w)
scale = math.sqrt(scale)
elif h * w < MINRES * MINRES:
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
scale = MINRES * MINRES / (h * w)
scale = math.sqrt(scale)
else:
scale = None
else:
scale = base_size * base_size / (h * w)
scale = math.sqrt(scale)
if scale is not None:
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
elif PAD2STRIDE:
if h % patch_size == 0:
new_h = h
else:
new_h = (h // patch_size + 1) * patch_size
if w % patch_size == 0:
new_w = w
else:
new_w = (w // patch_size + 1) * patch_size
image = pad_image(image, (new_h, new_w), value=127)
else:
scale = 1.0
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
return image
def resize_video(image, patch_size=14, base_size=896):
h, w = image.size
if base_size == 0:
if h * w > VIDEO_MAXRES * VIDEO_MAXRES:
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
scale = VIDEO_MAXRES * VIDEO_MAXRES / (h * w)
scale = math.sqrt(scale)
elif h * w < VIDEO_MINRES * VIDEO_MINRES:
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
scale = VIDEO_MINRES * VIDEO_MINRES / (h * w)
scale = math.sqrt(scale)
else:
scale = None
else:
scale = base_size * base_size / (h * w)
scale = math.sqrt(scale)
if scale is not None:
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
elif PAD2STRIDE:
if h % patch_size == 0:
new_h = h
else:
new_h = (h // patch_size + 1) * patch_size
if w % patch_size == 0:
new_w = w
else:
new_w = (w // patch_size + 1) * patch_size
image = pad_image(image, (new_h, new_w), value=127)
else:
scale = 1.0
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
return image
def process_anyres_video_genli(image, processor):
image = resize_video(image, patch_size=video_ps, base_size=video_base)
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
return image.unsqueeze(0)
def process_anyres_video_genli_long(image, processor):
image = resize_video(image, patch_size=video_ps * 2, base_size=video_base)
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
return image.unsqueeze(0)
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def process_anyres_highres_image_genli(image, processor):
h, w = image.size
if h < 32 and w < 32:
min_size = min(h, w)
ratio = 64 / min_size
image = image.resize((int(h * ratio), int(w * ratio)))
elif h < 32:
ratio = 64 / h
image = image.resize((int(h * ratio), int(w * ratio)))
elif w < 32:
ratio = 64 / w
image = image.resize((int(h * ratio), int(w * ratio)))
image = resize_images(image, patch_size=highres_ps, base_size=highres_base)
image_original_resize = resize_images(image, patch_size=LOWRES_RESIZE[1], base_size=LOWRES_RESIZE[0])
# image_patches = [image_original_resize] + [image_original_resize]
# image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
# for image_patch in image_patches]
image_patches = processor.preprocess(image_original_resize, return_tensors='pt')['pixel_values'][0]
image_padded = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
# return torch.stack(image_patches, dim=0), image_padded.unsqueeze(0)
return image_patches.unsqueeze(0), image_padded.unsqueeze(0)
def read_image_patch(patch_info):
if 'img_path' in patch_info.keys():
image = Image.open(patch_info['img_path']).convert('RGB')
else:
if 'image_encoing' in patch_info.keys():
patch_info['image_encoding'] = patch_info['image_encoing']
image_file_name = patch_info['patch']
start_bytes = int(patch_info['start_num'])
file_size = int(patch_info['size'])
with open(image_file_name, 'rb') as f:
f.seek(start_bytes)
if 'image_encoding' in patch_info.keys() and patch_info['image_encoding'] == 'base64':
image = Image.open(io.BytesIO(base64.b64decode(f.read(file_size).decode()))).convert("RGB")
else:
image = Image.open(io.BytesIO(f.read(file_size))).convert("RGB")
return image
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0]:] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False