Oryx / oryx /mm_utils.py
THUdyh's picture
update space
d9c19b7 verified
from PIL import Image
from io import BytesIO
import base64
import math
import ast
import torch
from transformers import StoppingCriteria
from oryx.constants import IMAGE_TOKEN_INDEX
import os
video_base = 0
video_ps = 64
highres_base = 0
highres_ps = 32
MAXRES = 1536
MINRES = 0
VIDEO_MAXRES = 480
VIDEO_MINRES = 288
LOWRES_RESIZE = (384,32)
PAD2STRIDE=False
def pad_image(image, target_resolution, value=0):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new('RGB', (target_width, target_height), (value, value, value))
paste_x = (target_width - original_width) // 2
paste_y = (target_height - original_height) // 2
new_image.paste(image, (paste_x, paste_y))
return new_image
def resize_images(image, patch_size=14, base_size=896):
h, w = image.size
if base_size == 0:
if h * w > MAXRES * MAXRES:
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
scale = MAXRES * MAXRES / (h * w)
scale = math.sqrt(scale)
elif h * w < MINRES * MINRES:
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
scale = MINRES * MINRES / (h * w)
scale = math.sqrt(scale)
else:
scale = None
else:
scale = base_size * base_size / (h * w)
scale = math.sqrt(scale)
if scale is not None:
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
elif PAD2STRIDE:
if h % patch_size == 0:
new_h = h
else:
new_h = (h // patch_size + 1) * patch_size
if w % patch_size == 0:
new_w = w
else:
new_w = (w // patch_size + 1) * patch_size
image = pad_image(image, (new_h, new_w), value=127)
else:
scale = 1.0
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
return image
def resize_video(image, patch_size=14, base_size=896):
h, w = image.size
if base_size == 0:
if h * w > VIDEO_MAXRES * VIDEO_MAXRES:
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
scale = VIDEO_MAXRES * VIDEO_MAXRES / (h * w)
scale = math.sqrt(scale)
elif h * w < VIDEO_MINRES * VIDEO_MINRES:
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
scale = VIDEO_MINRES * VIDEO_MINRES / (h * w)
scale = math.sqrt(scale)
else:
scale = None
else:
scale = base_size * base_size / (h * w)
scale = math.sqrt(scale)
if scale is not None:
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
elif PAD2STRIDE:
if h % patch_size == 0:
new_h = h
else:
new_h = (h // patch_size + 1) * patch_size
if w % patch_size == 0:
new_w = w
else:
new_w = (w // patch_size + 1) * patch_size
image = pad_image(image, (new_h, new_w), value=127)
else:
scale = 1.0
new_h = int(h * scale / patch_size) * patch_size
new_w = int(w * scale / patch_size) * patch_size
image = image.resize((new_h, new_w))
return image
def process_anyres_video_genli(image, processor):
image = resize_video(image, patch_size=video_ps, base_size=video_base)
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
return image.unsqueeze(0)
def process_anyres_video_genli_long(image, processor):
image = resize_video(image, patch_size=video_ps * 2, base_size=video_base)
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
return image.unsqueeze(0)
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def process_anyres_highres_image_genli(image, processor):
h, w = image.size
if h < 32 and w < 32:
min_size = min(h, w)
ratio = 64 / min_size
image = image.resize((int(h * ratio), int(w * ratio)))
elif h < 32:
ratio = 64 / h
image = image.resize((int(h * ratio), int(w * ratio)))
elif w < 32:
ratio = 64 / w
image = image.resize((int(h * ratio), int(w * ratio)))
image = resize_images(image, patch_size=highres_ps, base_size=highres_base)
image_original_resize = resize_images(image, patch_size=LOWRES_RESIZE[1], base_size=LOWRES_RESIZE[0])
# image_patches = [image_original_resize] + [image_original_resize]
# image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
# for image_patch in image_patches]
image_patches = processor.preprocess(image_original_resize, return_tensors='pt')['pixel_values'][0]
image_padded = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
# return torch.stack(image_patches, dim=0), image_padded.unsqueeze(0)
return image_patches.unsqueeze(0), image_padded.unsqueeze(0)
def read_image_patch(patch_info):
if 'img_path' in patch_info.keys():
image = Image.open(patch_info['img_path']).convert('RGB')
else:
if 'image_encoing' in patch_info.keys():
patch_info['image_encoding'] = patch_info['image_encoing']
image_file_name = patch_info['patch']
start_bytes = int(patch_info['start_num'])
file_size = int(patch_info['size'])
with open(image_file_name, 'rb') as f:
f.seek(start_bytes)
if 'image_encoding' in patch_info.keys() and patch_info['image_encoding'] == 'base64':
image = Image.open(io.BytesIO(base64.b64decode(f.read(file_size).decode()))).convert("RGB")
else:
image = Image.open(io.BytesIO(f.read(file_size))).convert("RGB")
return image
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == 'pt':
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f'Unsupported tensor type: {return_tensors}')
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0]:] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False