Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional, Tuple, Union, Dict | |
import torch | |
import os | |
import torch.nn as nn | |
import transformers | |
from transformers import AutoConfig, AutoModelForCausalLM | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from transformers.generation.utils import GenerateOutput | |
from oryx.model.oryx_arch import OryxMetaModel, OryxMetaForCausalLM | |
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM | |
class OryxQwenConfig(Qwen2Config): | |
model_type = "oryx_qwen" | |
class OryxQwenModel(OryxMetaModel, Qwen2Model): | |
config_class = OryxQwenConfig | |
def __init__(self, config: Qwen2Config): | |
super(OryxQwenModel, self).__init__(config) | |
class OryxQwenForCausalLM(Qwen2ForCausalLM, OryxMetaForCausalLM): | |
config_class = OryxQwenConfig | |
def __init__(self, config): | |
# super(Qwen2ForCausalLM, self).__init__(config) | |
Qwen2ForCausalLM.__init__(self, config) | |
config.model_type = "oryx_qwen" | |
config.rope_scaling = None | |
self.model = OryxQwenModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
images_highres: Optional[List[torch.FloatTensor]] = None, | |
image_sizes: Optional[List[List[int]]] = None, | |
return_dict: Optional[bool] = None, | |
modalities: Optional[List[str]] = ["image"], | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, | |
modalities, image_sizes, images_highres) | |
if labels is None: | |
return super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict | |
) | |
else: | |
return self.forward_llm_efficient( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict | |
) | |
def forward_llm_efficient(self, input_ids, attention_mask, position_ids, past_key_values, inputs_embeds, labels, use_cache, output_attentions, output_hidden_states, return_dict): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
hidden_dim = hidden_states.size(-1) | |
shift_labels = labels[..., 1:].contiguous().reshape(-1) | |
shift_hidden_states = hidden_states[..., :-1, :].contiguous().reshape(-1, hidden_dim) | |
assert shift_labels.size(0) == shift_hidden_states.size(0) | |
mask = shift_labels > -1 | |
assert mask.float().sum() > 0 | |
shift_labels = shift_labels[mask] | |
shift_hidden_states = shift_hidden_states[mask, :] | |
logits = self.lm_head(shift_hidden_states) | |
logits = logits.float() | |
loss_fct = nn.CrossEntropyLoss() | |
loss = loss_fct(logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
images_highres: Optional[List[torch.FloatTensor]] = None, | |
image_sizes: Optional[torch.Tensor] = None, | |
modalities: Optional[List[str]] = ["image"], | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None: | |
(inputs, | |
position_ids, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_) = self.prepare_inputs_labels_for_multimodal(inputs, | |
position_ids, | |
attention_mask, | |
None, None, | |
images, modalities, image_sizes=image_sizes, images_highres=images_highres) | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) | |
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): | |
images = kwargs.pop("images", None) | |
image_sizes = kwargs.pop("image_sizes", None) | |
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) | |
if images is not None: | |
inputs["images"] = images | |
if image_sizes is not None: | |
inputs["image_sizes"] = image_sizes | |
return inputs | |
AutoConfig.register("oryx_qwen", OryxQwenConfig) | |
AutoModelForCausalLM.register(OryxQwenConfig, OryxQwenForCausalLM) | |