import os import copy from dataclasses import dataclass, field import json import logging import pathlib from typing import Dict, Optional, Sequence, List import ast import torch import time import random import cv2 import transformers import tokenizers from oryx.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_INDEX from torch.utils.data import Dataset from oryx.train.oryx_trainer import OryxTrainer from oryx import conversation as conversation_lib from oryx.model import * from oryx.mm_utils import tokenizer_image_token, process_anyres_highres_image_genli, process_anyres_video_genli, process_anyres_video_genli_long from PIL import Image import io import base64 from packaging import version import numpy as np from transformers import AutoConfig import math import copy local_rank = None def rank0_print(*args): if local_rank == 0: print(*args) IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14') @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="facebook/opt-125m") version: Optional[str] = field(default="v0") freeze_backbone: bool = field(default=False) tune_mm_mlp_adapter: bool = field(default=False) tune_mm_vision_resampler: bool = field(default=False) vision_tower: Optional[str] = field(default=None) image_processor: Optional[str] = field(default=None) unfreeze_mm_vision_tower: bool = field(default=False) mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer pretrain_mm_mlp_adapter: Optional[str] = field(default=None) mm_projector_type: Optional[str] = field(default='linear') mm_use_im_start_end: bool = field(default=False) mm_use_im_patch_token: bool = field(default=True) mm_vision_select_feature: Optional[str] = field(default="patch") mm_resampler_type: Optional[str] = field(default=None) mm_mask_drop_mode: str = field(default="fixed") mm_mask_drop_skip_percentage: float = field(default=0.) mm_mask_drop_ratio: float = field(default=0.25) mm_mask_drop_ratio_upper: Optional[float] = field(default=None) mm_mask_drop_ratio_lower: Optional[float] = field(default=None) @dataclass class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) lazy_preprocess: bool = False is_multimodal: bool = False video_fps: Optional[int] = field(default=1) frames_upbound: Optional[int] = field(default=0) @dataclass class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") remove_unused_columns: bool = field(default=False) freeze_mm_mlp_adapter: bool = field(default=False) freeze_mm_vision_resampler: bool = field(default=False) mpt_attn_impl: Optional[str] = field(default="triton") model_max_length: int = field( default=512, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) double_quant: bool = field( default=True, metadata={"help": "Compress the quantization statistics through double quantization."} ) quant_type: str = field( default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} ) bits: int = field( default=16, metadata={"help": "How many bits to use."} ) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" mm_projector_lr: Optional[float] = None mm_vision_tower_lr: Optional[float] = None group_by_varlen: bool = field(default=False) group_by_modality_length: bool = field(default=False) group_by_modality_length_auto: bool = field(default=False) do_resize: bool = field(default=False) do_center_crop: bool = field(default=False) def maybe_zero_3(param, ignore_status=False, name=None): from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def find_all_linear_names(model): cls = torch.nn.Linear lora_module_names = set() multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler'] for name, module in model.named_modules(): if any(mm_keyword in name for mm_keyword in multimodal_keywords): continue if isinstance(module, cls): names = name.split('.') lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if 'lm_head' in lora_module_names: # needed for 16-bit lora_module_names.remove('lm_head') return list(lora_module_names) def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): """Collects the state dict and dump to disk.""" if getattr(trainer.args, "tune_mm_mlp_adapter", False): # Only save Adapter keys_to_match = ['mm_projector', 'vision_resampler'] if getattr(trainer.args, "use_im_start_end", False): keys_to_match.extend(['embed_tokens', 'embed_in']) weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) trainer.model.config.save_pretrained(output_dir) current_folder = output_dir.split('/')[-1] parent_folder = os.path.dirname(output_dir) if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: if current_folder.startswith('checkpoint-'): mm_projector_folder = os.path.join(parent_folder, "mm_projector") os.makedirs(mm_projector_folder, exist_ok=True) torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) else: torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) return if trainer.deepspeed: torch.cuda.synchronize() trainer.save_model(output_dir) return state_dict = trainer.model.state_dict() if trainer.args.should_save: cpu_state_dict = { key: value.cpu() for key, value in state_dict.items() } del state_dict trainer._save(output_dir, state_dict=cpu_state_dict) # noqa def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: """Tokenize a list of strings.""" tokenized_list = [ tokenizer( text, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ) for text in strings ] input_ids = labels = [ tokenized.input_ids[0] for tokenized in tokenized_list ] input_ids_lens = labels_lens = [ tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list ] return dict( input_ids=input_ids, labels=labels, input_ids_lens=input_ids_lens, labels_lens=labels_lens, ) def _mask_targets(target, tokenized_lens, speakers): # cur_idx = 0 cur_idx = tokenized_lens[0] tokenized_lens = tokenized_lens[1:] target[:cur_idx] = IGNORE_INDEX for tokenized_len, speaker in zip(tokenized_lens, speakers): if speaker == "human": target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX cur_idx += tokenized_len def _add_speaker_and_signal(header, source, get_conversation=True): """Add speaker and start/end signal on each round.""" BEGIN_SIGNAL = "### " END_SIGNAL = "\n" conversation = header for sentence in source: from_str = sentence["from"] if from_str.lower() == "human": from_str = conversation_lib.default_conversation.roles[0] elif from_str.lower() == "gpt": from_str = conversation_lib.default_conversation.roles[1] else: from_str = 'unknown' sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL) if get_conversation: conversation += sentence["value"] conversation += BEGIN_SIGNAL return conversation def preprocess_multimodal( sources: Sequence[str], data_args: DataArguments, ) -> Dict: is_multimodal = data_args.is_multimodal if not is_multimodal: return sources for source in sources: for sentence in source: if DEFAULT_IMAGE_TOKEN in sentence['value'] and not sentence['value'].startswith(DEFAULT_IMAGE_TOKEN): sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] sentence['value'] = sentence['value'].strip() if "mmtag" in conversation_lib.default_conversation.version: sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '' + DEFAULT_IMAGE_TOKEN + '') replace_token = DEFAULT_IMAGE_TOKEN if data_args.mm_use_im_start_end: replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) return sources def preprocess_multimodal_movie( sources: Sequence[str], data_args: DataArguments, video_inputs: str ) -> Dict: is_multimodal = data_args.is_multimodal if not is_multimodal: return sources for source in sources: for sentence in source: if DEFAULT_IMAGE_TOKEN in sentence['value']: prompt = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() replace_token = video_inputs if data_args.mm_use_im_start_end: replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) return sources, prompt def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} # im_start, im_end = tokenizer.additional_special_tokens_ids im_start = tokenizer("<|im_start|>").input_ids[0] im_end = tokenizer("<|im_end|>").input_ids[0] nl_tokens = tokenizer("\n").input_ids _system = tokenizer("system").input_ids + nl_tokens # Apply prompt templates input_ids, targets = [], [] for i, source in enumerate(sources): if roles[source[0]["from"]] != roles["human"]: source = source[1:] input_id, target = [], [] system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens input_id += system target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens assert len(input_id) == len(target) for j, sentence in enumerate(source): role = roles[sentence["from"]] if has_image and "" in sentence["value"]: # assert sentence["value"].startswith(""), print(sentence["value"]) if sentence["value"].startswith(""): _input_id = tokenizer(role).input_ids + nl_tokens + [IMAGE_TOKEN_INDEX] + nl_tokens + tokenizer(sentence["value"][len("") :]).input_ids + [im_end] + nl_tokens else: _input_id = [] split_value = sentence["value"].split('\n') _input_id += tokenizer(role).input_ids + nl_tokens for idx, cur_value in enumerate(split_value): if idx == len(split_value) - 1: _input_id = _input_id + tokenizer(cur_value).input_ids + [im_end] + nl_tokens else: _input_id = _input_id + tokenizer(cur_value).input_ids + [IMAGE_TOKEN_INDEX] + nl_tokens # # add end of text token # if PACK_SEQ > 0: # if j > 0: # _input_id = _end_of_text + _input_id else: _input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens # # add end of text token for pure text data # if PACK_SEQ > 0: # if sentence['from'] == 'human' and j > 0: # _input_id = _end_of_text + _input_id input_id += _input_id if role == "<|im_start|>user": _target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens elif role == "<|im_start|>assistant": _target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens else: raise NotImplementedError target += _target assert len(input_id) == len(target) # input_id += [tokenizer.pad_token_id] * (max_len - len(input_id)) # target += [IGNORE_INDEX] * (max_len - len(target)) input_ids.append(input_id) targets.append(target) input_ids = torch.tensor(input_ids, dtype=torch.long) targets = torch.tensor(targets, dtype=torch.long) return dict( input_ids=input_ids, # tensor(bs x seq_len) labels=targets, # tensor(bs x seq_len) # attention_mask=input_ids.ne(tokenizer.pad_token_id), # tensor(bs x seq_len) ) def preprocess_llama_2( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 # Mask targets sep = "[/INST] " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_llama_3( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: conv = copy.deepcopy(conversation_lib.conv_llava_llama_3) roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() offset = 0 if input_ids[0][0] != tokenizer.bos_token_id else 1 assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3 # Mask targets # sep = conv.sep + conv.roles[1] + ":" sep = '<|start_header_id|>assistant<|end_header_id|>\n\n' sep2 = '<|start_header_id|>user<|end_header_id|>\n\n' # Llama3 tokenizer has the token for whitespace # Typically, the token after whitespace will be naturally encoded as one token with whitespace # some special cases like ": 3" will be encoded as :, whitespace, 3; 3 tokens. Only in this case, the loss on whitespace will be calculated for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX # process system prompt try: rounds[1] = rounds[0] + sep2 + rounds[1] del rounds[0] except: print('no user found') raise ValueError # add user for i, rou in enumerate(rounds): if i != 0: rounds[i] = sep2 + rou for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break # parts[0] += sep # supervise assistant: from pp's report parts[1] = sep + parts[1] # parts[0] = parts[0] + sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) - offset instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) else: round_len = len(tokenizer(rou).input_ids) - offset instruction_len = len(tokenizer(parts[0]).input_ids) target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len + (1 - offset) #starting from index 0, then cur_len will not cover eos token if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) if input_ids[0][0] != tokenizer.bos_token_id: input_ids = [torch.cat([torch.LongTensor([tokenizer.bos_token_id]), i]) for i in input_ids] targets = [torch.cat([torch.LongTensor([IGNORE_INDEX]), i]) for i in targets] return dict( input_ids=input_ids, labels=targets, ) def preprocess_v1( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() if conv.sep_style == conversation_lib.SeparatorStyle.TWO: # Mask targets sep = conv.sep + conv.roles[1] + ": " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: round_len -= 1 instruction_len -= 1 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) elif conv.sep_style == conversation_lib.SeparatorStyle.QWEN2: # Mask targets sep = '<|im_start|>assistant\n' for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) raw_rounds = conversation.split('<|im_end|>\n') cur_len = 0 rounds = [] now_str = '' for rou in raw_rounds: if len(rou) > 0: rou = rou + '<|im_end|>\n' if rou.startswith('<|endoftext|>'): rounds[-1] = rounds[-1] + '<|endoftext|>' rou = rou.replace('<|endoftext|>', '') if len(rou.strip()) == 0: continue if '<|im_start|>assistant\n' in rou: now_str += rou rounds.append(now_str) now_str = '' else: now_str += rou for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 try: is_legacy = tokenizer.legacy except: is_legacy = True if i != 0 and not is_legacy and IS_TOKENIZER_GREATER_THAN_0_14: round_len -= 1 instruction_len -= 1 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch for QWEN2: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_imgsp_v1( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, img_token: str = '', refine_prompt: bool = False, ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] guided_prompt = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] img_in_text = False for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" # add guided prompt if role==conv.roles[0]: guided_sent = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, '').replace('\n', '') if refine_prompt: # only keep the useful part of the prompt if '\n' in guided_sent: for _sent in guided_sent.split('\n'): if '?' in _sent: guided_sent = _sent break guided_prompt.append(guided_sent) # check if image token in text if img_token in sentence["value"]: img_in_text = True # add image token to all sentence if multimoal input if role==conv.roles[0] and img_in_text and img_token not in sentence["value"]: # randomly add image token to the beginning or end of the sentence if random.randint(0,1)==0: img_conv = img_token + '\n' + sentence["value"] else: img_conv = sentence["value"] + '\n' + img_token conv.append_message(role, img_conv) else: conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.TWO # Mask targets sep = conv.sep + conv.roles[1] + ": " for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep2) cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 2 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)" ) return dict( input_ids=input_ids, labels=targets, prompt=guided_prompt, ) def preprocess_mpt( sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False ) -> Dict: conv = conversation_lib.default_conversation.copy() roles = {"human": conv.roles[0], "gpt": conv.roles[1]} # Apply prompt templates conversations = [] for i, source in enumerate(sources): if roles[source[0]["from"]] != conv.roles[0]: # Skip the first one if it is not from human source = source[1:] conv.messages = [] for j, sentence in enumerate(source): role = roles[sentence["from"]] assert role == conv.roles[j % 2], f"{i}" conv.append_message(role, sentence["value"]) conversations.append(conv.get_prompt()) # Tokenize conversations if has_image: input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) else: input_ids = tokenizer( conversations, return_tensors="pt", padding="longest", max_length=tokenizer.model_max_length, truncation=True, ).input_ids targets = input_ids.clone() assert conv.sep_style == conversation_lib.SeparatorStyle.MPT # Mask targets sep = conv.sep + conv.roles[1] for conversation, target in zip(conversations, targets): total_len = int(target.ne(tokenizer.pad_token_id).sum()) rounds = conversation.split(conv.sep) re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt for conv_idx in range(3, len(rounds), 2): re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt cur_len = 1 target[:cur_len] = IGNORE_INDEX for i, rou in enumerate(re_rounds): if rou == "": break parts = rou.split(sep) if len(parts) != 2: break parts[0] += sep if has_image: round_len = len(tokenizer_image_token(rou, tokenizer)) instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1 else: round_len = len(tokenizer(rou).input_ids) instruction_len = len(tokenizer(parts[0]).input_ids) - 1 if i != 0 and getattr(tokenizer, 'legacy', False) and IS_TOKENIZER_GREATER_THAN_0_14: round_len += 1 instruction_len += 1 target[cur_len : cur_len + instruction_len] = IGNORE_INDEX cur_len += round_len target[cur_len:] = IGNORE_INDEX if cur_len < tokenizer.model_max_length: if cur_len != total_len: target[:] = IGNORE_INDEX print( f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f"(#turns={len(re_rounds)} ignored)" ) return dict( input_ids=input_ids, labels=targets, ) def preprocess_plain( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, ) -> Dict: # add end signal and concatenate together conversations = [] for source in sources: assert len(source) == 2 assert DEFAULT_IMAGE_TOKEN in source[0]['value'] source[0]['value'] = DEFAULT_IMAGE_TOKEN conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep conversations.append(conversation) # tokenize conversations input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) target[:tokenized_len] = IGNORE_INDEX return dict(input_ids=input_ids, labels=targets) def preprocess_plain_guided( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, prompt: str = None, ) -> Dict: # add end signal and concatenate together guided_prompt = [] conversations = [] for source in sources: assert len(source) == 2 assert DEFAULT_IMAGE_TOKEN in source[0]['value'] guided_prompt.append(source[0]['value'].replace(DEFAULT_IMAGE_TOKEN, '').replace('\n', '')) source[0]['value'] = DEFAULT_IMAGE_TOKEN conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep conversations.append(conversation) # tokenize conversations input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) target[:tokenized_len] = IGNORE_INDEX def preprocess( sources: Sequence[str], tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, ) -> Dict: """ Given a list of sources, each is a conversation list. This transform: 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; 2. Concatenate conversations together; 3. Tokenize the concatenated conversation; 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. """ if conversation_lib.default_conversation.version.startswith("plain_guided"): return preprocess_plain_guided(sources, tokenizer) elif conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: return preprocess_plain(sources, tokenizer) if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: return preprocess_llama_2(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version.startswith("v1"): return preprocess_v1(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version.startswith("llama_v3"): # for llama 3 tokenizer return preprocess_llama_3(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "qwen": return preprocess_qwen(sources, tokenizer, has_image=has_image) elif conversation_lib.default_conversation.version.startswith("imgsp"): return preprocess_imgsp_v1(sources, tokenizer, has_image=has_image) if conversation_lib.default_conversation.version == "mpt": return preprocess_mpt(sources, tokenizer, has_image=has_image) # add end signal and concatenate together conversations = [] for source in sources: header = f"{conversation_lib.default_conversation.system}\n\n" conversation = _add_speaker_and_signal(header, source) conversations.append(conversation) # tokenize conversations def get_tokenize_len(prompts): return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] if has_image: input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] else: conversations_tokenized = _tokenize_fn(conversations, tokenizer) input_ids = conversations_tokenized["input_ids"] targets = copy.deepcopy(input_ids) for target, source in zip(targets, sources): if has_image: tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) else: tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] speakers = [sentence["from"] for sentence in source] _mask_targets(target, tokenized_lens, speakers) return dict(input_ids=input_ids, labels=targets) def read_image_patch(patch_info): if 'img_path' in patch_info.keys(): image = Image.open(patch_info['img_path']).convert('RGB') else: image_file_name = patch_info['patch'] start_bytes = int(patch_info['start_num']) file_size = int(patch_info['size']) with open(image_file_name, 'rb') as f: f.seek(start_bytes) if 'image_encoding' in patch_info.keys() and patch_info['image_encoding'] == 'base64': image = Image.open(io.BytesIO(base64.b64decode(f.read(file_size).decode()))).convert("RGB") else: image = Image.open(io.BytesIO(f.read(file_size))).convert("RGB") return image def read_video_patch(patch_info): if 'img_path' in patch_info.keys(): image = Image.open(patch_info['img_path']).convert('RGB') else: image_file_name = patch_info['patch'] start_bytes = int(patch_info['start_num']) file_size = patch_info['size'] # list of int total_file_size = 0 images_all = [] with open(image_file_name, 'rb') as f: for idx in range(len(file_size)): f.seek(start_bytes + total_file_size) if 'image_encoding' in patch_info.keys() and patch_info['image_encoding'] == 'base64': image = Image.open(io.BytesIO(base64.b64decode(f.read(int(file_size[idx])).decode()))).convert("RGB") else: if 'sharegpt4o' in image_file_name or 'ShareGPT4Video/new_patch' in image_file_name or 'cinepile' in image_file_name or 'nextqa' in image_file_name or 'perceptiontest' in image_file_name: byte_str = io.BytesIO(f.read(int(file_size[idx]))) array = np.frombuffer(byte_str.getvalue(), dtype=np.uint8) image = cv2.imdecode(array, cv2.IMREAD_COLOR) image = Image.fromarray(image) else: image = Image.open(io.BytesIO(f.read(int(file_size[idx])))).convert("RGB") images_all.append(image) total_file_size += int(file_size[idx]) return images_all class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments): super(LazySupervisedDataset, self).__init__() list_data_dict = json.load(open(data_path, "r")) rank0_print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.list_data_dict = list_data_dict self.data_args = data_args # if PRETRAIN: self.mapping_dict = json.load(open('/apdcephfs_jn/share_302244400/peterrao/nj3/data/llava/videodata/MovieNet/movienet_mapping.json', "r")) print('loadding mapping dict') def __len__(self): return len(self.list_data_dict) @property def lengths(self): length_list = [] for sample in self.list_data_dict: img_tokens = 128 if 'image' in sample else 0 length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) return length_list @property def modality_lengths(self): length_list = [] for sample in self.list_data_dict: try: cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) except: cur_len = 1 cur_len = cur_len if ('image' in sample) or ('video' in sample) or ('video_long' in sample) else -cur_len length_list.append(cur_len) return length_list def process_image(self, image_file): if type(image_file) is str: image = Image.open(image_file).convert('RGB') elif type(image_file) is dict: image = read_image_patch(image_file) else: raise ValueError(f"Unknown image file type: {type(image_file)}, {image_file}") image_size = image.size image, image_padded = process_anyres_highres_image_genli(image, self.data_args.image_processor) return (image, image_padded), image_size, "image" def process_video(self, video_file): video = read_video_patch(video_file) video_processed = [] cur_frames_upbound = self.data_args.frames_upbound if cur_frames_upbound > 0: if len(video) > cur_frames_upbound: uniform_sampled_frames = np.linspace(0, len(video) - 1, cur_frames_upbound, dtype=int) frame_idx = uniform_sampled_frames.tolist() else: frame_idx = None for idx, frame in enumerate(video): frame = process_anyres_video_genli(frame, self.data_args.image_processor) if frame_idx is not None and idx in frame_idx: video_processed.append(frame.unsqueeze(0)) elif frame_idx is None: video_processed.append(frame.unsqueeze(0)) if frame_idx is None: frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() video_processed = torch.cat(video_processed, dim=0) video_processed = (video_processed, video_processed) return (video_processed, (384, 384), "video"), frame_idx def process_video_pretrain(self, video_file, target_idx): video = read_video_patch(video_file) cur_frames_upbound = random.randint(self.data_args.frames_upbound * 3, self.data_args.frames_upbound * 4) video_processed = [] if cur_frames_upbound > 0: if len(video) > cur_frames_upbound: uniform_sampled_frames = np.linspace(0, len(video) - 1, cur_frames_upbound, dtype=int) frame_idx = uniform_sampled_frames.tolist() # process longer case target_idx_new = [] target_frame = [] if len(target_idx) == 1: target_idx_new.append(np.random.randint(0, len(uniform_sampled_frames))) target_frame.append(video[target_idx[0]]) elif len(target_idx) == 2: num1 = np.random.randint(0, len(uniform_sampled_frames) // 2) num2 = np.random.randint(num1 + 1, len(uniform_sampled_frames)) target_idx_new.append(num1) target_idx_new.append(num2) target_frame.append(video[target_idx[0]]) target_frame.append(video[target_idx[1]]) else: frame_idx = None target_idx_new = target_idx target_frame = None for idx, frame in enumerate(video): frame = process_anyres_video_genli_long(frame, self.data_args.image_processor) if frame_idx is not None and idx in frame_idx: video_processed.append(frame.unsqueeze(0)) elif frame_idx is None: video_processed.append(frame.unsqueeze(0)) # process longer case if target_frame is not None: for idx in target_idx_new: frame = target_frame.pop(0) frame = process_anyres_video_genli_long(frame, self.data_args.image_processor) video_processed[idx] = frame.unsqueeze(0) if frame_idx is None: frame_idx = np.arange(0, len(video_processed), dtype=int).tolist() video_processed = torch.cat(video_processed, dim=0) video_processed = (video_processed, video_processed) return (video_processed, (384, 384), "video_long"), target_idx_new def __getitem__(self, i) -> Dict[str, torch.Tensor]: # TODO: define number of retries somewhere else num_base_retries = 3 num_final_retries = 300 # try the current sample first for attempt_idx in range(num_base_retries): try: sample = self._get_item(i) return sample except Exception as e: # sleep 1s in case it is a cloud disk issue print(f'[try #{attempt_idx}] Failed to fetch sample {i}. Exception:', e) time.sleep(1) # try other samples, in case it is file corruption issue for attempt_idx in range(num_base_retries): try: sample_idx = random.choice(range(len(self))) sample = self._get_item(sample_idx) return sample except Exception as e: # no need to sleep print(f'[try other #{attempt_idx}] Failed to fetch sample {sample_idx}. Exception:', e) pass # still fail, most likely to be path issue or cloud disk issue, retry the same sample for longer for attempt_idx in range(num_final_retries): try: sample = self._get_item(i) return sample except Exception as e: # sleep 1s in case it is a cloud disk issue print(f'[final try #{attempt_idx}] Failed to fetch sample {i}. Exception:', e) time.sleep(1) # Finally raise exception on failing. assert False, "Failed to fetch sample." def _get_item(self, i) -> Dict[str, torch.Tensor]: sources = self.list_data_dict[i] if isinstance(i, int): sources = [sources] assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME if 'image' in sources[0]: image_file = self.list_data_dict[i]['image'] if type(image_file) is list: image = [self.process_image(f) for f in image_file] else: image = [self.process_image(image_file)] num_frames = 0 sources = preprocess_multimodal( copy.deepcopy([e["conversations"] for e in sources]), self.data_args ) elif 'video' in sources[0]: video_file = self.list_data_dict[i]['video'] video, _ = self.process_video(video_file) video = [video] num_frames = len(video[0][0]) sources = preprocess_multimodal( copy.deepcopy([e["conversations"] for e in sources]), self.data_args) elif 'video_long' in sources[0]: video_file = self.mapping_dict[self.list_data_dict[i]['video_long']]['video'] video, target_idx = self.process_video_pretrain(video_file, self.list_data_dict[i]['idx']) video = [video] num_frames = len(video[0][0][0]) question = sources[0]['question'] answer = sources[0]['answer'] if sources[0]['type'] == 'diff': question = question.replace('', str(target_idx[0])) question = question.replace('', str(target_idx[1])) elif sources[0]['type'] == 'caption': question = question.replace('', str(target_idx[0])) else: raise NotImplementedError sources[0]['conversations'] = [{'from': 'human', 'value': f'\nThis is a extremely long video with a total of {num_frames} frames sampled from the video. Please carefully read every given frame in this video, identifying the detailed contents in every frame. '+ question}, {'from': 'gpt', 'value': answer}] sources = preprocess_multimodal( copy.deepcopy([e["conversations"] for e in sources]), self.data_args) else: sources = copy.deepcopy([e["conversations"] for e in sources]) has_image = ('image' in self.list_data_dict[i]) or ('video' in self.list_data_dict[i]) or ('video_long' in self.list_data_dict[i]) data_dict = preprocess( sources, self.tokenizer, has_image=has_image) if isinstance(i, int): data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) # image exist in the data if 'image' in self.list_data_dict[i]: data_dict['image'] = image elif 'video' in self.list_data_dict[i]: data_dict['image'] = video elif 'video_long' in self.list_data_dict[i]: data_dict['image'] = video elif self.data_args.is_multimodal: # image does not exist in the data, but the model is multimodal crop_size = self.data_args.image_processor.crop_size data_dict['image'] = [ ( (torch.zeros(1, 3, crop_size['height'], crop_size['width']), torch.zeros(1, 3, crop_size['height'], crop_size['width'])), (crop_size['width'], crop_size['height']), "text" ), ] return data_dict @dataclass class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def pad_sequence(self, input_ids, batch_first, padding_value): if self.tokenizer.padding_side == "left": input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=batch_first, padding_value=padding_value) if self.tokenizer.padding_side == "left": input_ids = torch.flip(input_ids, [1]) return input_ids def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: # input_ids, labels = tuple([instance[key] for instance in instances] # for key in ("input_ids", "labels")) input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = [_input_ids[:self.tokenizer.model_max_length] for _input_ids in input_ids] labels = [_labels[:self.tokenizer.model_max_length] for _labels in labels] if self.tokenizer.pad_token_id is None: if "qwen" in self.tokenizer.name_or_path.lower(): print("Setting pad token to bos token for qwen model.") self.tokenizer.pad_token_id = 151643 else: self.tokenizer.pad_token_id = self.tokenizer.eos_token_id # FIXME: this could only be triggered for llama3 model. input_ids = self.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id) ) if 'image' in instances[0]: images = [instance['image'] for instance in instances] batch['image_sizes'] = [im[1] for im_list in images for im in im_list] batch['modalities'] = [im[2] for im_list in images for im in im_list] images_lowres = [im[0][0] for im_list in images for im in im_list] images_highres = [im[0][1] for im_list in images for im in im_list] batch['images_highres'] = images_highres if all(x is not None and x.shape == images_lowres[0].shape for x in images_lowres): batch['images'] = torch.stack(images_lowres) else: batch['images'] = images_lowres return batch def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict: """Make dataset and collator for supervised fine-tuning.""" train_dataset = LazySupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) def train(): global local_rank parser = transformers.HfArgumentParser( (ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() local_rank = training_args.local_rank compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) bnb_model_from_pretrained_args = {} if training_args.bits in [4, 8]: from transformers import BitsAndBytesConfig bnb_model_from_pretrained_args.update(dict( device_map={"": training_args.device}, load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, quantization_config=BitsAndBytesConfig( load_in_4bit=training_args.bits == 4, load_in_8bit=training_args.bits == 8, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=training_args.double_quant, bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} ) )) if model_args.vision_tower is not None: print(model_args.vision_tower) if 'qwen' in model_args.model_name_or_path.lower(): if not model_args.pretrain_mm_mlp_adapter: cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path) overwrite_config = {} overwrite_config["mm_resampler_type"] = model_args.mm_resampler_type print(f"Overwriting config with {overwrite_config}") for k, v in overwrite_config.items(): setattr(cfg_pretrained, k, v) model = OryxQwenForCausalLM.from_pretrained( model_args.model_name_or_path, config=cfg_pretrained, cache_dir=training_args.cache_dir, attn_implementation="flash_attention_2", torch_dtype=(torch.bfloat16 if training_args.bf16 else None), **bnb_model_from_pretrained_args ) else: model = OryxQwenForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation="flash_attention_2", torch_dtype=(torch.bfloat16 if training_args.bf16 else None), **bnb_model_from_pretrained_args ) else: # finetune from a image trained model # if not model_args.pretrain_mm_mlp_adapter: cfg_pretrained = AutoConfig.from_pretrained(model_args.model_name_or_path) overwrite_config = {} overwrite_config["mm_resampler_type"] = model_args.mm_resampler_type print(f"Overwriting config with {overwrite_config}") for k, v in overwrite_config.items(): setattr(cfg_pretrained, k, v) model = OryxLlamaForCausalLM.from_pretrained( model_args.model_name_or_path, config=cfg_pretrained, cache_dir=training_args.cache_dir, attn_implementation="flash_attention_2", torch_dtype=(torch.bfloat16 if training_args.bf16 else None), **bnb_model_from_pretrained_args ) else: model = transformers.LlamaForCausalLM.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, attn_implementation="flash_attention_2", torch_dtype=(torch.bfloat16 if training_args.bf16 else None), **bnb_model_from_pretrained_args ) model.config.use_cache = False if model_args.freeze_backbone: model.model.requires_grad_(False) if training_args.bits in [4, 8]: from peft import prepare_model_for_kbit_training model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) if training_args.gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) if training_args.lora_enable: from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=training_args.lora_r, lora_alpha=training_args.lora_alpha, target_modules=find_all_linear_names(model), lora_dropout=training_args.lora_dropout, bias=training_args.lora_bias, task_type="CAUSAL_LM", ) if training_args.bits == 16: if training_args.bf16: model.to(torch.bfloat16) if training_args.fp16: model.to(torch.float16) rank0_print("Adding LoRA adapters...") model = get_peft_model(model, lora_config) if "qwen" in model_args.model_name_or_path.lower(): tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right") else: tokenizer = transformers.AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=training_args.cache_dir, model_max_length=training_args.model_max_length, padding_side="right", use_fast=False, ) if model_args.version == "v0": if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token="[PAD]"), tokenizer=tokenizer, model=model, ) elif model_args.version == "v0.5": tokenizer.pad_token = tokenizer.unk_token elif model_args.version == "llava_llama_3": tokenizer.pad_token = "<|reserved_special_token_0|>" # only for llama3 conversation_lib.default_conversation = conversation_lib.conv_templates["llava_llama_3"] else: if 'llama-3' in model_args.model_name_or_path.lower(): tokenizer.pad_token = "<|reserved_special_token_0|>" else: tokenizer.pad_token = tokenizer.unk_token if model_args.version in conversation_lib.conv_templates: conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] else: conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] if model_args.vision_tower is not None: model.get_model().initialize_vision_modules( model_args=model_args, fsdp=training_args.fsdp ) vision_tower = model.get_vision_tower() vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) vision_tower.image_processor.do_resize = training_args.do_resize vision_tower.image_processor.do_center_crop = training_args.do_center_crop data_args.image_processor = vision_tower.image_processor data_args.is_multimodal = True model.config.tokenizer_padding_side = tokenizer.padding_side model.config.tokenizer_model_max_length = tokenizer.model_max_length model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter model.config.tune_mm_vision_resampler = training_args.tune_mm_vision_resampler = model_args.tune_mm_vision_resampler if model_args.tune_mm_mlp_adapter or model_args.tune_mm_vision_resampler: model.requires_grad_(False) if model_args.tune_mm_mlp_adapter: for p in model.get_model().mm_projector.parameters(): p.requires_grad = True if model_args.tune_mm_vision_resampler: for p in model.get_model().vision_resampler.parameters(): p.requires_grad = True model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter if training_args.freeze_mm_mlp_adapter: for p in model.get_model().mm_projector.parameters(): p.requires_grad = False model.config.freeze_mm_vision_resampler = training_args.freeze_mm_vision_resampler if training_args.freeze_mm_vision_resampler: for p in model.get_model().vision_resampler.parameters(): p.requires_grad = False model.config.unfreeze_mm_vision_tower = model_args.unfreeze_mm_vision_tower if model_args.unfreeze_mm_vision_tower: vision_tower.requires_grad_(True) if training_args.bits in [4, 8]: model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end model.config.mm_projector_lr = training_args.mm_projector_lr model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr training_args.use_im_start_end = model_args.mm_use_im_start_end model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) if training_args.bits in [4, 8]: from peft.tuners.lora import LoraLayer for name, module in model.named_modules(): if isinstance(module, LoraLayer): if training_args.bf16: module = module.to(torch.bfloat16) if 'norm' in name: module = module.to(torch.float32) if 'lm_head' in name or 'embed_tokens' in name: if hasattr(module, 'weight'): if training_args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) trainer = OryxTrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): trainer.train(resume_from_checkpoint=True) else: trainer.train() trainer.save_state() model.config.use_cache = True if training_args.lora_enable: state_dict = get_peft_state_maybe_zero_3( model.named_parameters(), training_args.lora_bias ) non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( model.named_parameters() ) if training_args.local_rank == 0 or training_args.local_rank == -1: model.config.save_pretrained(training_args.output_dir) model.save_pretrained(training_args.output_dir, state_dict=state_dict) torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) else: safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) if __name__ == "__main__": train()