File size: 14,334 Bytes
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f11b6a
 
 
 
 
 
 
 
e368cec
 
5f11b6a
 
 
 
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f11b6a
 
 
 
 
 
 
 
e368cec
 
5f11b6a
 
 
 
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f11b6a
 
 
 
 
 
 
 
 
e368cec
5f11b6a
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f11b6a
 
 
 
 
 
 
 
 
 
 
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e38f3
 
62f5658
 
e6b8c08
6ff1b6e
5f11b6a
 
 
6ff1b6e
5f11b6a
 
 
62f5658
e368cec
4e51ade
e368cec
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import argparse
from collections import defaultdict
import datetime
import json
import math
import pickle
from pytz import timezone

import numpy as np
import pandas as pd
import plotly.express as px
from tqdm import tqdm

from .model_registry import get_model_info
from .basic_stats import get_log_files
from .clean_battle_data import clean_battle_data
        
pd.options.display.float_format = "{:.2f}".format


def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
    rating = defaultdict(lambda: INIT_RATING)

    for rd, model_a, model_b, winner in battles[
        ["model_a", "model_b", "winner"]
    ].itertuples():
        ra = rating[model_a]
        rb = rating[model_b]
        ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
        eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
        if winner == "model_a":
            sa = 1
        elif winner == "model_b":
            sa = 0
        elif winner == "tie" or winner == "tie (bothbad)":
            sa = 0.5
        else:
            raise Exception(f"unexpected vote {winner}")
        rating[model_a] += K * (sa - ea)
        rating[model_b] += K * (1 - sa - eb)

    return dict(rating)


def get_bootstrap_result(battles, func_compute_elo, num_round=1000):
    rows = []
    for i in tqdm(range(num_round), desc="bootstrap"):
        tmp_battles = battles.sample(frac=1.0, replace=True)
        rows.append(func_compute_elo(tmp_battles))
    df = pd.DataFrame(rows)
    return df[df.median().sort_values(ascending=False).index]


def compute_elo_mle_with_tie(df, SCALE=400, BASE=10, INIT_RATING=1000):
    from sklearn.linear_model import LogisticRegression

    models = pd.concat([df["model_a"], df["model_b"]]).unique()
    models = pd.Series(np.arange(len(models)), index=models)

    # duplicate battles
    df = pd.concat([df, df], ignore_index=True)
    p = len(models.index)
    n = df.shape[0]

    X = np.zeros([n, p])
    X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
    X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)

    # one A win => two A win
    Y = np.zeros(n)
    Y[df["winner"] == "model_a"] = 1.0

    # one tie => one A win + one B win
    # find tie + tie (both bad) index
    tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
    tie_idx[len(tie_idx) // 2 :] = False
    Y[tie_idx] = 1.0

    lr = LogisticRegression(fit_intercept=False)
    lr.fit(X, Y)

    elo_scores = SCALE * lr.coef_[0] + INIT_RATING
    # calibrate llama-13b to 800 if applicable
    if "llama-13b" in models.index:
        elo_scores += 800 - elo_scores[models["llama-13b"]]
    return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)


def get_median_elo_from_bootstrap(bootstrap_df):
    median = dict(bootstrap_df.quantile(0.5))
    median = {k: int(v + 0.5) for k, v in median.items()}
    return median


def compute_pairwise_win_fraction(battles, model_order, limit_show_number=None):
    # Times each model wins as Model A
    a_win_ptbl = pd.pivot_table(
        battles[battles["winner"] == "model_a"],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )

    # Table counting times each model wins as Model B
    b_win_ptbl = pd.pivot_table(
        battles[battles["winner"] == "model_b"],
        index="model_a",
        columns="model_b",
        aggfunc="size",
        fill_value=0,
    )

    # Table counting number of A-B pairs
    num_battles_ptbl = pd.pivot_table(
        battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
    )

    # Computing the proportion of wins for each model as A and as B
    # against all other models
    row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (
        num_battles_ptbl + num_battles_ptbl.T
    )

    if model_order is None:
        prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
        model_order = list(prop_wins.keys())

    if limit_show_number is not None:
        model_order = model_order[:limit_show_number]

    # Arrange ordering according to proprition of wins
    row_beats_col = row_beats_col_freq.loc[model_order, model_order]
    return row_beats_col


def visualize_leaderboard_table(rating):
    models = list(rating.keys())
    models.sort(key=lambda k: -rating[k])

    emoji_dict = {
        1: "πŸ₯‡",
        2: "πŸ₯ˆ",
        3: "πŸ₯‰",
    }

    md = ""
    md += "| Rank | Model | Elo Rating | Description |\n"
    md += "| --- | --- | --- | --- |\n"
    for i, model in enumerate(models):
        rank = i + 1
        minfo = get_model_info(model)
        emoji = emoji_dict.get(rank, "")
        md += f"| {rank} | {emoji} [{model}]({minfo.link}) | {rating[model]:.0f} | {minfo.description} |\n"

    return md


def visualize_pairwise_win_fraction(battles, model_order):
    row_beats_col = compute_pairwise_win_fraction(battles, model_order)
    fig = px.imshow(
        row_beats_col,
        color_continuous_scale="RdBu",
        text_auto=".2f",
        height=700,
        width=700,
    )
    fig.update_layout(
        xaxis_title="Model B",
        yaxis_title="Model A",
        xaxis_side="top",
        title_y=0.07,
        title_x=0.5,
        # xaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
        # yaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
    )
    fig.update_traces(
        # textfont=dict(size=16),
        # colorbar=dict(
        #     title=dict(font=dict(size=16))
        # ),
        hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>"
    )

    return fig


def visualize_battle_count(battles, model_order):
    ptbl = pd.pivot_table(
        battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
    )
    battle_counts = ptbl + ptbl.T
    fig = px.imshow(
        battle_counts.loc[model_order, model_order],
        text_auto=True,
        height=700,
        width=700,
    )
    fig.update_layout(
        xaxis_title="Model B",
        yaxis_title="Model A",
        xaxis_side="top",
        title_y=0.07,
        title_x=0.5,
        # xaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
        # yaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
    )
    fig.update_traces(
        # textfont=dict(size=16),
        # colorbar=dict(
        #     title=dict(font=dict(size=16))
        # ),
        hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>"
    )
    return fig


def visualize_average_win_rate(battles, limit_show_number):
    row_beats_col_freq = compute_pairwise_win_fraction(
        battles, None, limit_show_number=limit_show_number
    )
    fig = px.bar(
        row_beats_col_freq.mean(axis=1).sort_values(ascending=False),
        text_auto=".2f",
        height=500,
        width=700,
    )
    fig.update_layout(
        yaxis_title="Average Win Rate", xaxis_title="Model", showlegend=False,
        # xaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
        # yaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
    )
    fig.update_traces(textfont_size=16)
    return fig


def visualize_bootstrap_elo_rating(df, df_final, limit_show_number):
    bars = (
        pd.DataFrame(
            dict(
                lower=df.quantile(0.025),
                rating=df_final,
                upper=df.quantile(0.975),
            )
        )
        .reset_index(names="model")
        .sort_values("rating", ascending=False)
    )
    bars = bars[:limit_show_number]
    bars["error_y"] = bars["upper"] - bars["rating"]
    bars["error_y_minus"] = bars["rating"] - bars["lower"]
    bars["rating_rounded"] = np.round(bars["rating"], 2)
    fig = px.scatter(
        bars,
        x="model",
        y="rating",
        error_y="error_y",
        error_y_minus="error_y_minus",
        text="rating_rounded",
        height=500,
        width=700,
    )
    fig.update_layout(xaxis_title="Model", yaxis_title="Rating",
        # xaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
        # yaxis=dict(
        #     tickfont=dict(size=16),
        #     title=dict(font=dict(size=16)),
        # ),
    )
    fig.update_traces(textfont_size=16)
    return fig


def report_elo_analysis_results(battles_json, rating_system="bt", num_bootstrap=100, anony_only=True):
    battles = pd.DataFrame(battles_json)
    battles = battles.sort_values(ascending=True, by=["tstamp"])
    # Only use anonymous votes
    if anony_only:
        battles = battles[battles["anony"]].reset_index(drop=True)
    battles_no_ties = battles[~battles["winner"].str.contains("tie")]

    # Online update
    elo_rating_online = compute_elo(battles)

    if rating_system == "bt":
        bootstrap_df = get_bootstrap_result(
            battles, compute_elo_mle_with_tie, num_round=num_bootstrap
        )
        elo_rating_final = compute_elo_mle_with_tie(battles)
    elif rating_system == "elo":
        bootstrap_df = get_bootstrap_result(
            battles, compute_elo, num_round=num_bootstrap
        )
        elo_rating_median = get_median_elo_from_bootstrap(bootstrap_df)
        elo_rating_final = elo_rating_median

    model_order = list(elo_rating_final.keys())
    model_order.sort(key=lambda k: -elo_rating_final[k])

    limit_show_number = 25  # limit show number to make plots smaller
    model_order = model_order[:limit_show_number]

    # leaderboard_table_df: elo rating, variance, 95% interval, number of battles
    leaderboard_table_df = pd.DataFrame(
        {
            "rating": elo_rating_final,
            "variance": bootstrap_df.var(),
            "rating_q975": bootstrap_df.quantile(0.975),
            "rating_q025": bootstrap_df.quantile(0.025),
            "num_battles": battles["model_a"].value_counts()
            + battles["model_b"].value_counts(),
        }
    )

    # Plots
    leaderboard_table = visualize_leaderboard_table(elo_rating_final)
    win_fraction_heatmap = visualize_pairwise_win_fraction(battles_no_ties, model_order)
    battle_count_heatmap = visualize_battle_count(battles_no_ties, model_order)
    average_win_rate_bar = visualize_average_win_rate(
        battles_no_ties, limit_show_number
    )
    bootstrap_elo_rating = visualize_bootstrap_elo_rating(
        bootstrap_df, elo_rating_final, limit_show_number
    )

    last_updated_tstamp = battles["tstamp"].max()
    last_updated_datetime = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y-%m-%d %H:%M:%S %Z")

    return {
        "rating_system": rating_system,
        "elo_rating_online": elo_rating_online,
        "elo_rating_final": elo_rating_final,
        "leaderboard_table": leaderboard_table,
        "win_fraction_heatmap": win_fraction_heatmap,
        "battle_count_heatmap": battle_count_heatmap,
        "average_win_rate_bar": average_win_rate_bar,
        "bootstrap_elo_rating": bootstrap_elo_rating,
        "last_updated_datetime": last_updated_datetime,
        "last_updated_tstamp": last_updated_tstamp,
        "bootstrap_df": bootstrap_df,
        "leaderboard_table_df": leaderboard_table_df,
    }


def pretty_print_elo_rating(rating):
    model_order = list(rating.keys())
    model_order.sort(key=lambda k: -rating[k])
    for i, model in enumerate(model_order):
        print(f"{i+1:2d}, {model:25s}, {rating[model]:.0f}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--clean-battle-file", type=str)
    parser.add_argument("--max-num-files", type=int)
    parser.add_argument("--num-bootstrap", type=int, default=100)
    parser.add_argument(
        "--rating-system", type=str, choices=["bt", "elo"], default="bt"
    )
    parser.add_argument("--exclude-tie", action="store_true", default=False)
    args = parser.parse_args()

    np.random.seed(42)

    if args.clean_battle_file:
        # Read data from a cleaned battle files
        battles = pd.read_json(args.clean_battle_file)
    else:
        # Read data from all log files
        log_files = get_log_files(args.max_num_files)
        battles = clean_battle_data(log_files)

    anony_results = report_elo_analysis_results(
        battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=True
    )
    full_results = report_elo_analysis_results(
        battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=False
    )
    

    print("# Online Elo")
    pretty_print_elo_rating(anony_results["elo_rating_online"])
    print("# Median")
    pretty_print_elo_rating(anony_results["elo_rating_final"])
    print(f"Annoy last update : {anony_results['last_updated_datetime']}")
    print(f"Full last update : {full_results['last_updated_datetime']}")
    
    
    # # save heatmap results in the same directory of the cleaned battle file
    win_fraction_heatmap_file = args.clean_battle_file.replace(".json", "_win_fraction_heatmap.jpg")
    battle_count_heatmap_file = args.clean_battle_file.replace(".json", "_battle_count_heatmap.jpg")
    average_win_rate_bar_file = args.clean_battle_file.replace(".json", "_average_win_rate_bar.jpg")
    bootstrap_elo_rating_file = args.clean_battle_file.replace(".json", "_bootstrap_elo_rating.jpg")
    anony_results["win_fraction_heatmap"].write_image(win_fraction_heatmap_file)
    anony_results["battle_count_heatmap"].write_image(battle_count_heatmap_file)
    anony_results["average_win_rate_bar"].write_image(average_win_rate_bar_file)
    anony_results["bootstrap_elo_rating"].write_image(bootstrap_elo_rating_file)
    

    last_updated_tstamp = full_results["last_updated_tstamp"]
    cutoff_date = datetime.datetime.fromtimestamp(
        last_updated_tstamp, tz=timezone("US/Pacific")
    ).strftime("%Y%m%d")


    results = {
        "anony": anony_results,
        "full": full_results,
    }
    with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
        pickle.dump(results, fout)