File size: 12,921 Bytes
e368cec
 
 
0b4b1e4
e368cec
 
 
0b4b1e4
 
e368cec
0b4b1e4
e368cec
 
0b4b1e4
 
e368cec
 
 
 
 
 
 
0b4b1e4
 
e368cec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94bd22c
e368cec
 
 
0b4b1e4
 
 
e368cec
 
e049190
 
 
 
 
0b4b1e4
 
 
e049190
 
e368cec
94bd22c
0b4b1e4
e368cec
 
0b4b1e4
 
 
e368cec
 
 
94bd22c
0b4b1e4
e368cec
 
0b4b1e4
 
 
e368cec
 
 
 
0b4b1e4
e368cec
 
0b4b1e4
 
 
e368cec
 
 
94bd22c
e368cec
 
 
0b4b1e4
 
 
 
 
 
 
 
 
 
 
 
 
e368cec
 
 
94bd22c
e368cec
 
 
0b4b1e4
 
 
e368cec
 
8d30b3b
 
 
 
 
0b4b1e4
 
 
8d30b3b
 
e368cec
 
 
 
 
0b4b1e4
 
 
e368cec
 
86da3fc
94bd22c
86da3fc
 
 
0b4b1e4
 
 
86da3fc
 
e368cec
94bd22c
e368cec
 
 
0b4b1e4
 
 
e368cec
 
 
94bd22c
e368cec
 
 
0b4b1e4
 
 
e368cec
 
fa656b2
 
 
 
 
0b4b1e4
 
 
fa656b2
 
8340e5c
 
 
 
 
0b4b1e4
 
 
8340e5c
 
09a289b
 
 
 
 
0b4b1e4
 
 
09a289b
 
 
4d32483
09a289b
 
 
0b4b1e4
 
 
09a289b
 
 
4d32483
09a289b
 
 
0b4b1e4
 
 
09a289b
 
 
e368cec
 
 
 
 
 
0b4b1e4
 
 
e368cec
 
 
 
 
 
 
0b4b1e4
 
 
e368cec
 
 
 
 
 
 
0b4b1e4
 
 
e368cec
 
 
 
 
 
 
 
0b4b1e4
 
 
e368cec
 
 
 
 
 
 
0b4b1e4
 
 
e368cec
 
 
 
 
 
 
0b4b1e4
 
 
e368cec
 
623aaf3
 
 
 
 
0b4b1e4
 
 
623aaf3
 
 
 
 
 
 
0b4b1e4
 
 
623aaf3
 
172a089
 
 
 
 
0b4b1e4
 
 
172a089
 
e368cec
944dd2b
e368cec
 
 
0b4b1e4
 
 
e368cec
944dd2b
 
26dad4e
944dd2b
 
 
0b4b1e4
 
 
944dd2b
 
765fb5e
 
 
 
 
0b4b1e4
 
 
765fb5e
 
944dd2b
26dad4e
944dd2b
 
 
0b4b1e4
 
 
944dd2b
26dad4e
 
 
 
 
 
0b4b1e4
 
 
26dad4e
 
1599f4c
 
 
 
 
0b4b1e4
 
 
1599f4c
26dad4e
 
 
 
 
0b4b1e4
 
 
26dad4e
65622ab
e1b7db1
 
 
c3c53e2
e1b7db1
0b4b1e4
 
 
e1b7db1
0b4b1e4
4e37c8d
 
 
 
 
0b4b1e4
 
 
4e37c8d
 
 
 
 
 
 
0b4b1e4
 
 
4e37c8d
e368cec
172a089
1599f4c
172a089
 
 
0b4b1e4
 
 
172a089
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
from collections import namedtuple
from typing import List

ModelInfo = namedtuple("ModelInfo", ["simple_name", "link", "description", "license", "organization", "type"])
model_info = {}

def register_model_info(
    full_names: List[str], simple_name: str, link: str, description: str,
    license: str, organization: str, model_type: str
):
    info = ModelInfo(simple_name, link, description, license, organization, model_type)
    for full_name in full_names:
        model_info[full_name] = info
        model_info[full_name.split("_")[1]] = info
    model_info[simple_name] = info

def get_model_info(name: str) -> ModelInfo:
    if name in model_info:
        return model_info[name]
    else:
        # To fix this, please use `register_model_info` to register your model
        return ModelInfo(
            name, "-", "Register the description at fastchat/model/model_registry.py",
            "-", "-", None
        )

def get_model_description_md(model_list):
    model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
    ct = 0
    visited = set()
    for i, name in enumerate(model_list):
        minfo = get_model_info(name)
        if minfo.simple_name in visited:
            continue
        visited.add(minfo.simple_name)
        one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"

        if ct % 3 == 0:
            model_description_md += "|"
        model_description_md += f" {one_model_md} |"
        if ct % 3 == 2:
            model_description_md += "\n"
        ct += 1
    return model_description_md

# regist image generation models

register_model_info(
    ["imagenhub_LCM_generation", "fal_LCM_text2image"],
    "LCM",
    "https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7",
    "Latent Consistency Models.",
    "MIT License",
    "Tsinghua University",
    "text2image_generation"
)

register_model_info(
    ["fal_LCM(v1.5/XL)_text2image"],
    "LCM(v1.5/XL)",
    "https://fal.ai/models/fast-lcm-diffusion-turbo",
    "Latent Consistency Models (v1.5/XL)",
    "openrail++",
    "Latent Consistency",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_PlayGroundV2_generation", 'playground_PlayGroundV2_generation'],
    "PlayGround V2",
    "https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic",
    "Playground v2 – 1024px Aesthetic Model",
    "Playground v2 Community License",
    "Playground",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_PlayGroundV2.5_generation", 'playground_PlayGroundV2.5_generation'],
    "PlayGround V2.5",
    "https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic",
    "Playground v2.5 is the state-of-the-art open-source model in aesthetic quality",
    "Playground v2.5 Community License",
    "Playground",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_OpenJourney_generation"],
    "OpenJourney",
    "https://huggingface.co/prompthero/openjourney",
    "Openjourney is an open source Stable Diffusion fine tuned model on Midjourney images, by PromptHero.",
    "creativeml-openrail-m",
    "PromptHero",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_SDXLTurbo_generation", "fal_SDXLTurbo_text2image"],
    "SDXLTurbo",
    "https://huggingface.co/stabilityai/sdxl-turbo",
    "SDXL-Turbo is a fast generative text-to-image model.",
    "sai-nc-community (other)",
    "Stability AI",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_SDEdit_edition"],
    "SDEdit",
    "https://sde-image-editing.github.io",
    "SDEdit is an image synthesis and editing framework based on stochastic differential equations (SDEs) or diffusion models.",
    "MIT License",
    "Stanford University",
    "image_edition"
)

register_model_info(
    ["imagenhub_SDXL_generation", "fal_SDXL_text2image"],
    "SDXL",
    "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
    "SDXL is a Latent Diffusion Model that uses two fixed, pretrained text encoders.",
    "openrail++",
    "Stability AI",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_SD3_generation"],
    "SD3",
    "https://huggingface.co/blog/sd3",
    "SD3 is a novel Multimodal Diffusion Transformer (MMDiT) model.",
    "stabilityai-nc-research-community",
    "Stability AI",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_PixArtAlpha_generation"],
    "PixArtAlpha",
    "https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS",
    "Pixart-α consists of pure transformer blocks for latent diffusion.",
    "openrail++",
    "PixArt-alpha",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_PixArtSigma_generation", "fal_PixArtSigma_text2image"],
    "PixArtSigma",
    "https://github.com/PixArt-alpha/PixArt-sigma",
    "Improved version of Pixart-α.",
    "openrail++",
    "PixArt-alpha",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_SDXLLightning_generation", "fal_SDXLLightning_text2image"],
    "SDXL-Lightning",
    "https://huggingface.co/ByteDance/SDXL-Lightning",
    "SDXL-Lightning is a lightning-fast text-to-image generation model.",
    "openrail++",
    "ByteDance",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_StableCascade_generation", "fal_StableCascade_text2image"],
    "StableCascade",
    "https://huggingface.co/stabilityai/stable-cascade",
    "StableCascade is built upon the Würstchen architecture and working at a much smaller latent space.",
    "stable-cascade-nc-community (other)",
    "Stability AI",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_HunyuanDiT_generation"],
    "HunyuanDiT",
    "https://github.com/Tencent/HunyuanDiT",
    "HunyuanDiT is a Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding",
    "tencent-hunyuan-community",
    "Tencent",
    "text2image_generation"
)

register_model_info(
    ["imagenhub_Kolors_generation"],
    "Kolors",
    "https://huggingface.co/Kwai-Kolors/Kolors",
    "Kolors is a large-scale text-to-image generation model based on latent diffusion",
    "Apache-2.0",
    "Kwai Kolors",
    "text2image_generation"
)

register_model_info(
    ["fal_AuraFlow_text2image"],
    "AuraFlow",
    "https://huggingface.co/fal/AuraFlow",
    "Opensourced flow-based text-to-image generation model.",
    "Apache-2.0",
    "Fal.AI",
    "text2image_generation"
)

register_model_info(
    ["fal_FLUX1schnell_text2image"],
    "FLUX.1-schnell",
    "https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux",
    "Flux is a series of text-to-image generation models based on diffusion transformers. Timestep-distilled version.",
    "flux-1-dev-non-commercial-license (other)",
    "Black Forest Labs",
    "text2image_generation"
)

register_model_info(
    ["fal_FLUX1dev_text2image"],
    "FLUX.1-dev",
    "https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux",
    "Flux is a series of text-to-image generation models based on diffusion transformers. Guidance-distilled version.",
    "flux-1-dev-non-commercial-license (other)",
    "Black Forest Labs",
    "text2image_generation"
)


# regist image edition models
register_model_info(
    ["imagenhub_CycleDiffusion_edition"],
    "CycleDiffusion",
    "https://github.com/ChenWu98/cycle-diffusion?tab=readme-ov-file",
    "A latent space for stochastic diffusion models.",
    "X11",
    "Carnegie Mellon University",
    "image_edition"
)

register_model_info(
    ["imagenhub_Pix2PixZero_edition"],
    "Pix2PixZero",
    "https://pix2pixzero.github.io/",
    "A zero-shot Image-to-Image translation model.",
    "MIT License",
    "Carnegie Mellon University, Adobe Research",
    "image_edition"
)

register_model_info(
    ["imagenhub_Prompt2prompt_edition"],
    "Prompt2prompt",
    "https://prompt-to-prompt.github.io/",
    "Image Editing with Cross-Attention Control.",
    "Apache-2.0",
    "Google, Tel Aviv University",
    "image_edition"
)


register_model_info(
    ["imagenhub_InstructPix2Pix_edition"],
    "InstructPix2Pix",
    "https://www.timothybrooks.com/instruct-pix2pix",
    "An instruction-based image editing model.",
    "Copyright 2023 Timothy Brooks, Aleksander Holynski, Alexei A. Efros",
    "University of California, Berkeley",
    "image_edition"
)

register_model_info(
    ["imagenhub_MagicBrush_edition"],
    "MagicBrush",
    "https://osu-nlp-group.github.io/MagicBrush/",
    "Manually Annotated Dataset for Instruction-Guided Image Editing.",
    "CC-BY-4.0",
    "The Ohio State University, University of Waterloo",
    "image_edition"
)

register_model_info(
    ["imagenhub_PNP_edition"],
    "PNP",
    "https://github.com/MichalGeyer/plug-and-play",
    "Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation.",
    "-",
    "Weizmann Institute of Science",
    "image_edition"
)

register_model_info(
    ["imagenhub_InfEdit_edition"],
    "InfEdit",
    "https://sled-group.github.io/InfEdit/",
    "Inversion-Free Image Editing with Natural Language.",
    "CC BY-NC-ND 4.0",
    "University of Michigan, University of California, Berkeley",
    "image_edition"
)

register_model_info(
    ["imagenhub_CosXLEdit_edition"],
    "CosXLEdit",
    "https://huggingface.co/stabilityai/cosxl",
    "An instruction-based image editing model from SDXL.",
    "cosxl-nc-community",
    "Stability AI",
    "image_edition"
)

register_model_info(
    ["imagenhub_UltraEdit_edition"],
    "UltraEdit",
    "https://ultra-editing.github.io/",
    "Instruction-based Fine-Grained Image Editing at Scale.",
    "other",
    "Peking University; BIGAI",
    "image_edition"
)

register_model_info(
    ["fal_stable-cascade_text2image"],
    "StableCascade",
    "https://fal.ai/models/stable-cascade/api",
    "StableCascade is a generative model that can generate high-quality images from text prompts.",
    "stable-cascade-nc-community (other)",
    "Stability AI",
    "image_edition"
)

register_model_info(
    ["fal_AnimateDiff_text2video"],
    "AnimateDiff",
    "https://fal.ai/models/fast-animatediff-t2v",
    "AnimateDiff is a text-driven models that produce diverse and personalized animated images.",
    "creativeml-openrail-m",
    "The Chinese University of Hong Kong, Shanghai AI Lab, Stanford University",
    "text2video_generation"
)

register_model_info(
    ["fal_StableVideoDiffusion_text2video"],
    "StableVideoDiffusion",
    "https://fal.ai/models/fal-ai/fast-svd/text-to-video/api",
    "Stable Video Diffusion empowers individuals to transform text and image inputs into vivid scenes.",
    "SVD-nc-community",
    "Stability AI",
    "text2video_generation"
)

register_model_info(
    ["fal_AnimateDiffTurbo_text2video"],
    "AnimateDiff Turbo",
    "https://fal.ai/models/fast-animatediff-t2v-turbo",
    "AnimateDiff Turbo is a lightning version of AnimateDiff.",
    "creativeml-openrail-m",
    "The Chinese University of Hong Kong, Shanghai AI Lab, Stanford University",
    "text2video_generation"
)

register_model_info(
    ["videogenhub_VideoCrafter2_generation"],
    "VideoCrafter2",
    "https://ailab-cvc.github.io/videocrafter2/",
    "VideoCrafter2 is a T2V model that disentangling motion from appearance.",
    "Apache 2.0",
    "Tencent AI Lab",
    "text2video_generation"
)

register_model_info(
    ["videogenhub_LaVie_generation"],
    "LaVie",
    "https://github.com/Vchitect/LaVie",
    "LaVie is a video generation model with cascaded latent diffusion models.",
    "Apache 2.0",
    "Shanghai AI Lab",
    "text2video_generation"
)
register_model_info(
    ["videogenhub_ModelScope_generation"],
    "ModelScope",
    "https://arxiv.org/abs/2308.06571",
    "ModelScope is a a T2V synthesis model that evolves from a T2I synthesis model.",
    "cc-by-nc-4.0",
    "Alibaba Group",
    "text2video_generation"
)

register_model_info(
    ["videogenhub_OpenSora_generation"],
    "OpenSora",
    "https://github.com/hpcaitech/Open-Sora",
    "A community-driven opensource implementation of Sora.",
    "Apache 2.0",
    "HPC-AI Tech",
    "text2video_generation"
)

register_model_info(
    ["videogenhub_OpenSora12_generation"],
    "OpenSora v1.2",
    "https://github.com/hpcaitech/Open-Sora",
    "A community-driven opensource implementation of Sora. v1.2",
    "Apache 2.0",
    "HPC-AI Tech",
    "text2video_generation"
)

register_model_info(
    ["videogenhub_CogVideoX_generation"],
    "CogVideoX",
    "https://github.com/THUDM/CogVideo",
    "Text-to-Video Diffusion Models with An Expert Transformer.",
    "CogVideoX LICENSE",
    "THUDM",
    "text2video_generation"
)
    
register_model_info(
    ["fal_T2VTurbo_text2video"],
    "T2V-Turbo",
    "https://github.com/Ji4chenLi/t2v-turbo",
    "Video Consistency Model with Mixed Reward Feedback.",
    "cc-by-nc-4.0",
    "University of California, Santa Barbara",
    "text2video_generation"
)