Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,542 Bytes
e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 94bd22c e368cec 0b4b1e4 e368cec e049190 0b4b1e4 e049190 e368cec 94bd22c 0b4b1e4 e368cec 0b4b1e4 e368cec 94bd22c 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 94bd22c e368cec 0b4b1e4 e368cec 94bd22c e368cec 0b4b1e4 e368cec 8d30b3b 0b4b1e4 8d30b3b e368cec 0b4b1e4 e368cec 86da3fc 94bd22c 86da3fc 0b4b1e4 86da3fc e368cec 94bd22c e368cec 0b4b1e4 e368cec 94bd22c e368cec 0b4b1e4 e368cec fa656b2 0b4b1e4 fa656b2 8340e5c 0b4b1e4 8340e5c 09a289b 0b4b1e4 09a289b 4d32483 09a289b 74fa6be 0b4b1e4 09a289b 4d32483 09a289b 0b4b1e4 09a289b e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 0b4b1e4 e368cec 623aaf3 0b4b1e4 623aaf3 0b4b1e4 623aaf3 172a089 0b4b1e4 172a089 b3212f3 e368cec 944dd2b e368cec 0b4b1e4 e368cec 944dd2b 26dad4e 944dd2b 0b4b1e4 944dd2b 765fb5e 0b4b1e4 765fb5e 944dd2b 26dad4e 944dd2b 0b4b1e4 944dd2b 26dad4e 0b4b1e4 26dad4e 1599f4c 0b4b1e4 1599f4c 26dad4e 0b4b1e4 26dad4e 65622ab e1b7db1 c3c53e2 e1b7db1 0b4b1e4 e1b7db1 0b4b1e4 4e37c8d 0b4b1e4 4e37c8d e548ada 063f216 e548ada bf853bd 4e37c8d 063f216 e548ada 4e37c8d 0b4b1e4 4e37c8d e368cec 172a089 1599f4c 172a089 0b4b1e4 172a089 aa59622 530174e fb2a667 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
from collections import namedtuple
from typing import List
ModelInfo = namedtuple("ModelInfo", ["simple_name", "link", "description", "license", "organization", "type"])
model_info = {}
def register_model_info(
full_names: List[str], simple_name: str, link: str, description: str,
license: str, organization: str, model_type: str
):
info = ModelInfo(simple_name, link, description, license, organization, model_type)
for full_name in full_names:
model_info[full_name] = info
model_info[full_name.split("_")[1]] = info
model_info[simple_name] = info
def get_model_info(name: str) -> ModelInfo:
if name in model_info:
return model_info[name]
else:
# To fix this, please use `register_model_info` to register your model
return ModelInfo(
name, "-", "Register the description at fastchat/model/model_registry.py",
"-", "-", None
)
def get_model_description_md(model_list):
model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
ct = 0
visited = set()
for i, name in enumerate(model_list):
minfo = get_model_info(name)
if minfo.simple_name in visited:
continue
visited.add(minfo.simple_name)
one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"
if ct % 3 == 0:
model_description_md += "|"
model_description_md += f" {one_model_md} |"
if ct % 3 == 2:
model_description_md += "\n"
ct += 1
return model_description_md
# regist image generation models
register_model_info(
["imagenhub_LCM_generation", "fal_LCM_text2image"],
"LCM",
"https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7",
"Latent Consistency Models.",
"MIT License",
"Tsinghua University",
"text2image_generation"
)
register_model_info(
["fal_LCM(v1.5/XL)_text2image"],
"LCM(v1.5/XL)",
"https://fal.ai/models/fast-lcm-diffusion-turbo",
"Latent Consistency Models (v1.5/XL)",
"openrail++",
"Latent Consistency",
"text2image_generation"
)
register_model_info(
["imagenhub_PlayGroundV2_generation", 'playground_PlayGroundV2_generation'],
"PlayGround V2",
"https://huggingface.co/playgroundai/playground-v2-1024px-aesthetic",
"Playground v2 – 1024px Aesthetic Model",
"Playground v2 Community License",
"Playground",
"text2image_generation"
)
register_model_info(
["imagenhub_PlayGroundV2.5_generation", 'playground_PlayGroundV2.5_generation'],
"PlayGround V2.5",
"https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic",
"Playground v2.5 is the state-of-the-art open-source model in aesthetic quality",
"Playground v2.5 Community License",
"Playground",
"text2image_generation"
)
register_model_info(
["imagenhub_OpenJourney_generation"],
"OpenJourney",
"https://huggingface.co/prompthero/openjourney",
"Openjourney is an open source Stable Diffusion fine tuned model on Midjourney images, by PromptHero.",
"creativeml-openrail-m",
"PromptHero",
"text2image_generation"
)
register_model_info(
["imagenhub_SDXLTurbo_generation", "fal_SDXLTurbo_text2image"],
"SDXLTurbo",
"https://huggingface.co/stabilityai/sdxl-turbo",
"SDXL-Turbo is a fast generative text-to-image model.",
"sai-nc-community (other)",
"Stability AI",
"text2image_generation"
)
register_model_info(
["imagenhub_SDEdit_edition"],
"SDEdit",
"https://sde-image-editing.github.io",
"SDEdit is an image synthesis and editing framework based on stochastic differential equations (SDEs) or diffusion models.",
"MIT License",
"Stanford University",
"image_edition"
)
register_model_info(
["imagenhub_SDXL_generation", "fal_SDXL_text2image"],
"SDXL",
"https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0",
"SDXL is a Latent Diffusion Model that uses two fixed, pretrained text encoders.",
"openrail++",
"Stability AI",
"text2image_generation"
)
register_model_info(
["imagenhub_SD3_generation"],
"SD3",
"https://huggingface.co/blog/sd3",
"SD3 is a novel Multimodal Diffusion Transformer (MMDiT) model.",
"stabilityai-nc-research-community",
"Stability AI",
"text2image_generation"
)
register_model_info(
["imagenhub_PixArtAlpha_generation"],
"PixArtAlpha",
"https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS",
"Pixart-α consists of pure transformer blocks for latent diffusion.",
"openrail++",
"PixArt-alpha",
"text2image_generation"
)
register_model_info(
["imagenhub_PixArtSigma_generation", "fal_PixArtSigma_text2image"],
"PixArtSigma",
"https://github.com/PixArt-alpha/PixArt-sigma",
"Improved version of Pixart-α.",
"openrail++",
"PixArt-alpha",
"text2image_generation"
)
register_model_info(
["imagenhub_SDXLLightning_generation", "fal_SDXLLightning_text2image"],
"SDXL-Lightning",
"https://huggingface.co/ByteDance/SDXL-Lightning",
"SDXL-Lightning is a lightning-fast text-to-image generation model.",
"openrail++",
"ByteDance",
"text2image_generation"
)
register_model_info(
["imagenhub_StableCascade_generation", "fal_StableCascade_text2image"],
"StableCascade",
"https://huggingface.co/stabilityai/stable-cascade",
"StableCascade is built upon the Würstchen architecture and working at a much smaller latent space.",
"stable-cascade-nc-community (other)",
"Stability AI",
"text2image_generation"
)
register_model_info(
["imagenhub_HunyuanDiT_generation"],
"HunyuanDiT",
"https://github.com/Tencent/HunyuanDiT",
"HunyuanDiT is a Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding",
"tencent-hunyuan-community",
"Tencent",
"text2image_generation"
)
register_model_info(
["imagenhub_Kolors_generation"],
"Kolors",
"https://huggingface.co/Kwai-Kolors/Kolors",
"Kolors is a large-scale text-to-image generation model based on latent diffusion",
"Apache-2.0",
"Kwai Kolors",
"text2image_generation"
)
register_model_info(
["fal_AuraFlow_text2image"],
"AuraFlow",
"https://huggingface.co/fal/AuraFlow",
"Opensourced flow-based text-to-image generation model.",
"Apache-2.0",
"Fal.AI",
"text2image_generation"
)
register_model_info(
["fal_FLUX1schnell_text2image"],
"FLUX.1-schnell",
"https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux",
"Flux is a series of text-to-image generation models based on diffusion transformers. Timestep-distilled version.",
"Apache-2.0",
"Black Forest Labs",
"text2image_generation"
)
register_model_info(
["fal_FLUX1dev_text2image"],
"FLUX.1-dev",
"https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux",
"Flux is a series of text-to-image generation models based on diffusion transformers. Guidance-distilled version.",
"flux-1-dev-non-commercial-license (other)",
"Black Forest Labs",
"text2image_generation"
)
# regist image edition models
register_model_info(
["imagenhub_CycleDiffusion_edition"],
"CycleDiffusion",
"https://github.com/ChenWu98/cycle-diffusion?tab=readme-ov-file",
"A latent space for stochastic diffusion models.",
"X11",
"Carnegie Mellon University",
"image_edition"
)
register_model_info(
["imagenhub_Pix2PixZero_edition"],
"Pix2PixZero",
"https://pix2pixzero.github.io/",
"A zero-shot Image-to-Image translation model.",
"MIT License",
"Carnegie Mellon University, Adobe Research",
"image_edition"
)
register_model_info(
["imagenhub_Prompt2prompt_edition"],
"Prompt2prompt",
"https://prompt-to-prompt.github.io/",
"Image Editing with Cross-Attention Control.",
"Apache-2.0",
"Google, Tel Aviv University",
"image_edition"
)
register_model_info(
["imagenhub_InstructPix2Pix_edition"],
"InstructPix2Pix",
"https://www.timothybrooks.com/instruct-pix2pix",
"An instruction-based image editing model.",
"Copyright 2023 Timothy Brooks, Aleksander Holynski, Alexei A. Efros",
"University of California, Berkeley",
"image_edition"
)
register_model_info(
["imagenhub_MagicBrush_edition"],
"MagicBrush",
"https://osu-nlp-group.github.io/MagicBrush/",
"Manually Annotated Dataset for Instruction-Guided Image Editing.",
"CC-BY-4.0",
"The Ohio State University, University of Waterloo",
"image_edition"
)
register_model_info(
["imagenhub_PNP_edition"],
"PNP",
"https://github.com/MichalGeyer/plug-and-play",
"Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation.",
"-",
"Weizmann Institute of Science",
"image_edition"
)
register_model_info(
["imagenhub_InfEdit_edition"],
"InfEdit",
"https://sled-group.github.io/InfEdit/",
"Inversion-Free Image Editing with Natural Language.",
"CC BY-NC-ND 4.0",
"University of Michigan, University of California, Berkeley",
"image_edition"
)
register_model_info(
["imagenhub_CosXLEdit_edition"],
"CosXLEdit",
"https://huggingface.co/stabilityai/cosxl",
"An instruction-based image editing model from SDXL.",
"cosxl-nc-community",
"Stability AI",
"image_edition"
)
register_model_info(
["imagenhub_UltraEdit_edition"],
"UltraEdit",
"https://ultra-editing.github.io/",
"Instruction-based Fine-Grained Image Editing at Scale.",
"other",
"Peking University; BIGAI",
"image_edition"
)
register_model_info(
["imagenhub_AURORA_edition"],
"AURORA",
"https://aurora-editing.github.io/",
"AURORA (Action Reasoning Object Attribute) enables training an instruction-guided image editing model that can perform action and reasoning-centric edits.",
"MIT",
"McGill NLP",
"image_edition"
)
register_model_info(
["fal_stable-cascade_text2image"],
"StableCascade",
"https://fal.ai/models/stable-cascade/api",
"StableCascade is a generative model that can generate high-quality images from text prompts.",
"stable-cascade-nc-community (other)",
"Stability AI",
"image_edition"
)
register_model_info(
["fal_AnimateDiff_text2video"],
"AnimateDiff",
"https://fal.ai/models/fast-animatediff-t2v",
"AnimateDiff is a text-driven models that produce diverse and personalized animated images.",
"creativeml-openrail-m",
"The Chinese University of Hong Kong, Shanghai AI Lab, Stanford University",
"text2video_generation"
)
register_model_info(
["fal_StableVideoDiffusion_text2video"],
"StableVideoDiffusion",
"https://fal.ai/models/fal-ai/fast-svd/text-to-video/api",
"Stable Video Diffusion empowers individuals to transform text and image inputs into vivid scenes.",
"SVD-nc-community",
"Stability AI",
"text2video_generation"
)
register_model_info(
["fal_AnimateDiffTurbo_text2video"],
"AnimateDiff Turbo",
"https://fal.ai/models/fast-animatediff-t2v-turbo",
"AnimateDiff Turbo is a lightning version of AnimateDiff.",
"creativeml-openrail-m",
"The Chinese University of Hong Kong, Shanghai AI Lab, Stanford University",
"text2video_generation"
)
register_model_info(
["videogenhub_VideoCrafter2_generation"],
"VideoCrafter2",
"https://ailab-cvc.github.io/videocrafter2/",
"VideoCrafter2 is a T2V model that disentangling motion from appearance.",
"Apache 2.0",
"Tencent AI Lab",
"text2video_generation"
)
register_model_info(
["videogenhub_LaVie_generation"],
"LaVie",
"https://github.com/Vchitect/LaVie",
"LaVie is a video generation model with cascaded latent diffusion models.",
"Apache 2.0",
"Shanghai AI Lab",
"text2video_generation"
)
register_model_info(
["videogenhub_ModelScope_generation"],
"ModelScope",
"https://arxiv.org/abs/2308.06571",
"ModelScope is a a T2V synthesis model that evolves from a T2I synthesis model.",
"cc-by-nc-4.0",
"Alibaba Group",
"text2video_generation"
)
register_model_info(
["videogenhub_OpenSora_generation"],
"OpenSora",
"https://github.com/hpcaitech/Open-Sora",
"A community-driven opensource implementation of Sora.",
"Apache 2.0",
"HPC-AI Tech",
"text2video_generation"
)
register_model_info(
["videogenhub_OpenSora12_generation"],
"OpenSora v1.2",
"https://github.com/hpcaitech/Open-Sora",
"A community-driven opensource implementation of Sora. v1.2",
"Apache 2.0",
"HPC-AI Tech",
"text2video_generation"
)
register_model_info(
["videogenhub_CogVideoX-2B_generation"],
"CogVideoX-2B",
"https://github.com/THUDM/CogVideo",
"Text-to-Video Diffusion Models with An Expert Transformer.",
"CogVideoX LICENSE",
"THUDM",
"text2video_generation"
)
register_model_info(
["videogenhub_PyramidFlow_text2video"],
"Pyramid Flow",
"https://pyramid-flow.github.io/",
"Pyramidal Flow Matching for Efficient Video Generative Modeling.",
"MIT LICENSE",
"Peking University",
"text2video_generation"
)
register_model_info(
["fal_CogVideoX-5B_text2video"],
"CogVideoX-5B",
"https://github.com/THUDM/CogVideo",
"Text-to-Video Diffusion Models with An Expert Transformer.",
"CogVideoX LICENSE",
"THUDM",
"text2video_generation"
)
register_model_info(
["fal_T2VTurbo_text2video"],
"T2V-Turbo",
"https://github.com/Ji4chenLi/t2v-turbo",
"Video Consistency Model with Mixed Reward Feedback.",
"cc-by-nc-4.0",
"University of California, Santa Barbara",
"text2video_generation"
)
register_model_info(
["videogenhub_Allegro_text2video"],
"Allegro",
"https://github.com/rhymes-ai/Allegro",
"DiT based Video Generation Model",
"Apache 2.0",
"rhymes-ai",
"text2video_generation"
)
register_model_info(
["videogenhub_LTXVideo_text2video"],
"LTXVideo",
"https://github.com/Lightricks/LTX-Video",
"DiT based Video Generation Model",
"Apache 2.0",
"Lightricks",
"text2video_generation"
)
register_model_info(
["videogenhub_Mochi1_text2video"],
"Mochi1",
"https://github.com/genmoai/mochi",
"Mochi 1 preview is an open state-of-the-art video generation model with high-fidelity motion and strong prompt adherence in preliminary evaluation.",
"Apache 2.0",
"Genmo AI",
"text2video_generation"
) |