Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,524 Bytes
e368cec 5f11b6a e368cec 5f11b6a e368cec 5f11b6a e368cec 5f11b6a e368cec 5f11b6a e368cec 5f11b6a e368cec 5f11b6a e368cec e70b763 e368cec e70b763 e368cec 34e38f3 62f5658 e6b8c08 6ff1b6e 5f11b6a 6ff1b6e 5f11b6a 62f5658 e368cec 4e51ade e368cec 8750953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
import argparse
from collections import defaultdict
import datetime
import json
import math
import pickle
from pytz import timezone
import numpy as np
import pandas as pd
import plotly.express as px
from tqdm import tqdm
from .model_registry import get_model_info
from .basic_stats import get_log_files
from .clean_battle_data import clean_battle_data
pd.options.display.float_format = "{:.2f}".format
def compute_elo(battles, K=4, SCALE=400, BASE=10, INIT_RATING=1000):
rating = defaultdict(lambda: INIT_RATING)
for rd, model_a, model_b, winner in battles[
["model_a", "model_b", "winner"]
].itertuples():
ra = rating[model_a]
rb = rating[model_b]
ea = 1 / (1 + BASE ** ((rb - ra) / SCALE))
eb = 1 / (1 + BASE ** ((ra - rb) / SCALE))
if winner == "model_a":
sa = 1
elif winner == "model_b":
sa = 0
elif winner == "tie" or winner == "tie (bothbad)":
sa = 0.5
else:
raise Exception(f"unexpected vote {winner}")
rating[model_a] += K * (sa - ea)
rating[model_b] += K * (1 - sa - eb)
return dict(rating)
def get_bootstrap_result(battles, func_compute_elo, num_round=1000):
rows = []
for i in tqdm(range(num_round), desc="bootstrap"):
tmp_battles = battles.sample(frac=1.0, replace=True)
rows.append(func_compute_elo(tmp_battles))
df = pd.DataFrame(rows)
return df[df.median().sort_values(ascending=False).index]
def compute_elo_mle_with_tie(df, SCALE=400, BASE=10, INIT_RATING=1000):
from sklearn.linear_model import LogisticRegression
models = pd.concat([df["model_a"], df["model_b"]]).unique()
models = pd.Series(np.arange(len(models)), index=models)
# duplicate battles
df = pd.concat([df, df], ignore_index=True)
p = len(models.index)
n = df.shape[0]
X = np.zeros([n, p])
X[np.arange(n), models[df["model_a"]]] = +math.log(BASE)
X[np.arange(n), models[df["model_b"]]] = -math.log(BASE)
# one A win => two A win
Y = np.zeros(n)
Y[df["winner"] == "model_a"] = 1.0
# one tie => one A win + one B win
# find tie + tie (both bad) index
tie_idx = (df["winner"] == "tie") | (df["winner"] == "tie (bothbad)")
tie_idx[len(tie_idx) // 2 :] = False
Y[tie_idx] = 1.0
lr = LogisticRegression(fit_intercept=False)
lr.fit(X, Y)
elo_scores = SCALE * lr.coef_[0] + INIT_RATING
# calibrate llama-13b to 800 if applicable
if "llama-13b" in models.index:
elo_scores += 800 - elo_scores[models["llama-13b"]]
return pd.Series(elo_scores, index=models.index).sort_values(ascending=False)
def get_median_elo_from_bootstrap(bootstrap_df):
median = dict(bootstrap_df.quantile(0.5))
median = {k: int(v + 0.5) for k, v in median.items()}
return median
def compute_pairwise_win_fraction(battles, model_order, limit_show_number=None):
# Times each model wins as Model A
a_win_ptbl = pd.pivot_table(
battles[battles["winner"] == "model_a"],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
# Table counting times each model wins as Model B
b_win_ptbl = pd.pivot_table(
battles[battles["winner"] == "model_b"],
index="model_a",
columns="model_b",
aggfunc="size",
fill_value=0,
)
# Table counting number of A-B pairs
num_battles_ptbl = pd.pivot_table(
battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
)
# Computing the proportion of wins for each model as A and as B
# against all other models
row_beats_col_freq = (a_win_ptbl + b_win_ptbl.T) / (
num_battles_ptbl + num_battles_ptbl.T
)
if model_order is None:
prop_wins = row_beats_col_freq.mean(axis=1).sort_values(ascending=False)
model_order = list(prop_wins.keys())
if limit_show_number is not None:
model_order = model_order[:limit_show_number]
# Arrange ordering according to proprition of wins
row_beats_col = row_beats_col_freq.loc[model_order, model_order]
return row_beats_col
def visualize_leaderboard_table(rating):
models = list(rating.keys())
models.sort(key=lambda k: -rating[k])
emoji_dict = {
1: "π₯",
2: "π₯",
3: "π₯",
}
md = ""
md += "| Rank | Model | Elo Rating | Description |\n"
md += "| --- | --- | --- | --- |\n"
for i, model in enumerate(models):
rank = i + 1
minfo = get_model_info(model)
emoji = emoji_dict.get(rank, "")
md += f"| {rank} | {emoji} [{model}]({minfo.link}) | {rating[model]:.0f} | {minfo.description} |\n"
return md
def visualize_pairwise_win_fraction(battles, model_order):
row_beats_col = compute_pairwise_win_fraction(battles, model_order)
fig = px.imshow(
row_beats_col,
color_continuous_scale="RdBu",
text_auto=".2f",
height=700,
width=700,
)
fig.update_layout(
xaxis_title="Model B",
yaxis_title="Model A",
xaxis_side="top",
title_y=0.07,
title_x=0.5,
# xaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
# yaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
)
fig.update_traces(
# textfont=dict(size=16),
# colorbar=dict(
# title=dict(font=dict(size=16))
# ),
hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Fraction of A Wins: %{z}<extra></extra>"
)
return fig
def visualize_battle_count(battles, model_order):
ptbl = pd.pivot_table(
battles, index="model_a", columns="model_b", aggfunc="size", fill_value=0
)
battle_counts = ptbl + ptbl.T
fig = px.imshow(
battle_counts.loc[model_order, model_order],
text_auto=True,
height=700,
width=700,
)
fig.update_layout(
xaxis_title="Model B",
yaxis_title="Model A",
xaxis_side="top",
title_y=0.07,
title_x=0.5,
# xaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
# yaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
)
fig.update_traces(
# textfont=dict(size=16),
# colorbar=dict(
# title=dict(font=dict(size=16))
# ),
hovertemplate="Model A: %{y}<br>Model B: %{x}<br>Count: %{z}<extra></extra>"
)
return fig
def visualize_average_win_rate(battles, limit_show_number):
row_beats_col_freq = compute_pairwise_win_fraction(
battles, None, limit_show_number=limit_show_number
)
fig = px.bar(
row_beats_col_freq.mean(axis=1).sort_values(ascending=False),
text_auto=".2f",
height=500,
width=700,
)
fig.update_layout(
yaxis_title="Average Win Rate", xaxis_title="Model", showlegend=False,
# xaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
# yaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
)
fig.update_traces(textfont_size=16)
return fig
def visualize_bootstrap_elo_rating(df, df_final, limit_show_number):
bars = (
pd.DataFrame(
dict(
lower=df.quantile(0.025),
rating=df_final,
upper=df.quantile(0.975),
)
)
.reset_index(names="model")
.sort_values("rating", ascending=False)
)
bars = bars[:limit_show_number]
bars["error_y"] = bars["upper"] - bars["rating"]
bars["error_y_minus"] = bars["rating"] - bars["lower"]
bars["rating_rounded"] = np.round(bars["rating"], 2)
fig = px.scatter(
bars,
x="model",
y="rating",
error_y="error_y",
error_y_minus="error_y_minus",
text="rating_rounded",
height=500,
width=700,
)
fig.update_layout(xaxis_title="Model", yaxis_title="Rating",
# xaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
# yaxis=dict(
# tickfont=dict(size=16),
# title=dict(font=dict(size=16)),
# ),
)
fig.update_traces(textfont_size=16)
return fig
def report_elo_analysis_results(battles_json, rating_system="bt", num_bootstrap=100, anony_only=True):
battles = pd.DataFrame(battles_json)
battles = battles.sort_values(ascending=True, by=["tstamp"])
# Only use anonymous votes
if anony_only:
battles = battles[battles["anony"]].reset_index(drop=True)
battles_no_ties = battles[~battles["winner"].str.contains("tie")]
# Online update
elo_rating_online = compute_elo(battles)
if rating_system == "bt":
bootstrap_df = get_bootstrap_result(
battles, compute_elo_mle_with_tie, num_round=num_bootstrap
)
elo_rating_final = compute_elo_mle_with_tie(battles)
elif rating_system == "elo":
bootstrap_df = get_bootstrap_result(
battles, compute_elo, num_round=num_bootstrap
)
elo_rating_median = get_median_elo_from_bootstrap(bootstrap_df)
elo_rating_final = elo_rating_median
model_order = list(elo_rating_final.keys())
model_order.sort(key=lambda k: -elo_rating_final[k])
limit_show_number = 25 # limit show number to make plots smaller
model_order = model_order[:limit_show_number]
# leaderboard_table_df: elo rating, variance, 95% interval, number of battles
leaderboard_table_df = pd.DataFrame(
{
"rating": elo_rating_final,
"variance": bootstrap_df.var(),
"rating_q975": bootstrap_df.quantile(0.975),
"rating_q025": bootstrap_df.quantile(0.025),
"num_battles": battles["model_a"].value_counts()
+ battles["model_b"].value_counts(),
}
)
# Plots
leaderboard_table = visualize_leaderboard_table(elo_rating_final)
win_fraction_heatmap = visualize_pairwise_win_fraction(battles_no_ties, model_order)
battle_count_heatmap = visualize_battle_count(battles_no_ties, model_order)
average_win_rate_bar = visualize_average_win_rate(
battles_no_ties, limit_show_number
)
bootstrap_elo_rating = visualize_bootstrap_elo_rating(
bootstrap_df, elo_rating_final, limit_show_number
)
last_updated_tstamp = battles["tstamp"].max()
last_updated_datetime = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y-%m-%d %H:%M:%S %Z")
return {
"rating_system": rating_system,
"elo_rating_online": elo_rating_online,
"elo_rating_final": elo_rating_final,
"leaderboard_table": leaderboard_table,
"win_fraction_heatmap": win_fraction_heatmap,
"battle_count_heatmap": battle_count_heatmap,
"average_win_rate_bar": average_win_rate_bar,
"bootstrap_elo_rating": bootstrap_elo_rating,
"last_updated_datetime": last_updated_datetime,
"last_updated_tstamp": last_updated_tstamp,
"bootstrap_df": bootstrap_df,
"leaderboard_table_df": leaderboard_table_df,
}
def pretty_print_elo_rating(rating):
model_order = list(rating.keys())
model_order.sort(key=lambda k: -rating[k])
for i, model in enumerate(model_order):
print(f"{i+1:2d}, {model:25s}, {rating[model]:.0f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--clean-battle-file", type=str)
parser.add_argument("--max-num-files", type=int)
parser.add_argument("--num-bootstrap", type=int, default=100)
parser.add_argument(
"--rating-system", type=str, choices=["bt", "elo"], default="bt"
)
parser.add_argument("--exclude-tie", action="store_true", default=False)
parser.add_argument("--min_num_battles_per_model", type=int, default=50)
args = parser.parse_args()
np.random.seed(42)
if args.clean_battle_file:
# Read data from a cleaned battle files
battles = pd.read_json(args.clean_battle_file)
else:
# Read data from all log files
log_files = get_log_files(args.max_num_files)
battles = clean_battle_data(log_files)
if args.min_num_battles_per_model:
num_battles_per_model = defaultdict(int)
# use pd
for _, battle in battles.iterrows():
num_battles_per_model[battle["model_a"]] += 1
num_battles_per_model[battle["model_b"]] += 1
to_remove_models = [
model for model, num_battles in num_battles_per_model.items() if num_battles < args.min_num_battles_per_model
]
battles_with_enough_battles = battles[
~battles["model_a"].isin(to_remove_models) & ~battles["model_b"].isin(to_remove_models)
]
# battles_with_enough_battles = [
# battle for battle in battles if battle["model_a"] not in to_remove_models and battle["model_b"] not in to_remove_models
# ]
print(f"Remove models with less than {args.min_num_battles_per_model} battles: {to_remove_models}")
print(f"Number of battles: {len(battles)} -> {len(battles_with_enough_battles)}")
battles = battles_with_enough_battles
anony_results = report_elo_analysis_results(
battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=True
)
full_results = report_elo_analysis_results(
battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=False
)
print("# Online Elo")
pretty_print_elo_rating(anony_results["elo_rating_online"])
print("# Median")
pretty_print_elo_rating(anony_results["elo_rating_final"])
print(f"Annoy last update : {anony_results['last_updated_datetime']}")
print(f"Full last update : {full_results['last_updated_datetime']}")
# # save heatmap results in the same directory of the cleaned battle file
win_fraction_heatmap_file = args.clean_battle_file.replace(".json", "_win_fraction_heatmap.jpg")
battle_count_heatmap_file = args.clean_battle_file.replace(".json", "_battle_count_heatmap.jpg")
average_win_rate_bar_file = args.clean_battle_file.replace(".json", "_average_win_rate_bar.jpg")
bootstrap_elo_rating_file = args.clean_battle_file.replace(".json", "_bootstrap_elo_rating.jpg")
anony_results["win_fraction_heatmap"].write_image(win_fraction_heatmap_file)
anony_results["battle_count_heatmap"].write_image(battle_count_heatmap_file)
anony_results["average_win_rate_bar"].write_image(average_win_rate_bar_file)
anony_results["bootstrap_elo_rating"].write_image(bootstrap_elo_rating_file)
last_updated_tstamp = full_results["last_updated_tstamp"]
cutoff_date = datetime.datetime.fromtimestamp(
last_updated_tstamp, tz=timezone("US/Pacific")
).strftime("%Y%m%d")
results = {
"anony": anony_results,
"full": full_results,
}
with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
pickle.dump(results, fout)
with open("cut_off_date.txt", "w") as fout:
fout.write(cutoff_date) |