File size: 4,595 Bytes
e368cec
 
 
 
 
619dcd0
e368cec
944dd2b
e368cec
 
 
 
 
944dd2b
e368cec
bd0bce1
e368cec
 
bd0bce1
e368cec
 
 
 
619dcd0
2af380b
e368cec
bd0bce1
2af380b
e368cec
5777088
e368cec
 
 
 
 
 
 
a071819
 
e368cec
5777088
e368cec
 
 
a071819
 
e368cec
bd0bce1
619dcd0
e368cec
 
2af380b
e368cec
5777088
e368cec
 
 
a071819
 
 
 
e368cec
5777088
e368cec
 
 
 
 
 
a071819
 
944dd2b
 
fff5214
944dd2b
 
 
 
 
 
 
 
 
 
 
 
8bd6620
a071819
944dd2b
 
 
 
 
8bd6620
a071819
944dd2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import concurrent.futures 
import random
import gradio as gr
import requests
import io, base64, json
import spaces
from PIL import Image
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, load_pipeline

class ModelManager:
    def __init__(self):
        self.model_ig_list = IMAGE_GENERATION_MODELS
        self.model_ie_list = IMAGE_EDITION_MODELS
        self.model_vg_list = VIDEO_GENERATION_MODELS
        self.loaded_models = {}

    def load_model_pipe(self, model_name):
        if not model_name in self.loaded_models:
            pipe = load_pipeline(model_name)
            self.loaded_models[model_name] = pipe
        else:
            pipe = self.loaded_models[model_name]
        return pipe
    
    @spaces.GPU(duration=120)
    def generate_image_ig(self, prompt, model_name):
        pipe = self.load_model_pipe(model_name)
        result = pipe(prompt=prompt)
        return result

    def generate_image_ig_parallel_anony(self, prompt, model_A, model_B):
        if model_A == "" and model_B == "":
            model_names = random.sample([model for model in self.model_ig_list], 2)
        else:
            model_names = [model_A, model_B]

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ig, prompt, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1], model_names[0], model_names[1]

    def generate_image_ig_parallel(self, prompt, model_A, model_B):
        model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ig, prompt, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1]

    @spaces.GPU(duration=150)
    def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name):
        pipe = self.load_model_pipe(model_name)
        result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct)
        return result

    def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
        model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [
                executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image,
                                model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1]

    def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
        if model_A == "" and model_B == "":
            model_names = random.sample([model for model in self.model_ie_list], 2)
        else:
            model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1], model_names[0], model_names[1]

    @spaces.GPU(duration=180)
    def generate_video_vg(self, prompt, model_name):
        pipe = self.load_model_pipe(model_name)
        result = pipe(prompt=prompt)
        return result

    def generate_video_vg_parallel_anony(self, prompt, model_A, model_B):
        if model_A == "" and model_B == "":
            model_names = random.sample([model for model in self.model_vg_list], 2)
        else:
            model_names = [model_A, model_B]

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_video_vg, prompt, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1], model_names[0], model_names[1]

    def generate_video_vg_parallel(self, prompt, model_A, model_B):
        model_names = [model_A, model_B]
        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(self.generate_video_vg, prompt, model) for model in model_names]
            results = [future.result() for future in futures]
        return results[0], results[1]