GenAI-Arena / model /model_manager.py
vinesmsuic's picture
Adding NSFW_simple function of code (not loaded)
4492b9b
raw
history blame
17.5 kB
import concurrent.futures
import random
import gradio as gr
import requests
import io, base64, json, os
import spaces
from PIL import Image
from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, VIDEO_GENERATION_MODELS, MUSEUM_UNSUPPORTED_MODELS, DESIRED_APPEAR_MODEL, load_pipeline
from .fetch_museum_results import draw_from_imagen_museum, draw2_from_imagen_museum, draw_from_videogen_museum, draw2_from_videogen_museum
from .pre_download import pre_download_all_models, pre_download_video_models
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import re
def debug_packages():
import pkg_resources
installed_packages = pkg_resources.working_set
for package in installed_packages:
print(f"{package.key}=={package.version}")
def fetch_unsafe_words(file_path):
"""
Loads unsafe words from a file and returns them as a list.
"""
try:
with open(file_path, 'r') as file:
# Read lines from file and strip any extra whitespace
unsafe_words = [line.strip() for line in file.readlines()]
# Remove any empty strings that may result from empty lines
unsafe_words = [word for word in unsafe_words if word]
return unsafe_words
except Exception as e:
print(f"Error loading file: {e}. Using default unsafe words.")
# Default unsafe words list
return [
"anal", "anus", "arse", "ass", "ballsack", "bastard", "bdsm", "bitch", "bimbo",
"blow job", "blowjob", "blue waffle", "boob", "booobs", "breasts", "booty call",
"boner", "bondage", "bullshit", "busty", "butthole", "cawk", "chink", "clit",
"cnut", "cock", "cokmuncher", "cowgirl", "crap", "crotch", "cum", "cunt", "damn",
"dick", "dildo", "dink", "deepthroat", "deep throat", "dog style", "doggie style",
"doggy style", "doosh", "douche", "duche", "ejaculate", "ejaculating",
"ejaculation", "ejakulate", "erotic", "erotism", "fag", "fatass", "femdom",
"fingering", "footjob", "foot job", "fuck", "fcuk", "fingerfuck", "fistfuck",
"fook", "fooker", "fuk", "gangbang", "gang bang", "gaysex", "handjob",
"hand job", "hentai", "hooker", "hoer", "homo", "horny", "incest", "jackoff",
"jack off", "jerkoff", "jerk off", "jizz", "masturbate", "mofo", "mothafuck",
"motherfuck", "milf", "muff", "nigga", "nigger", "nipple", "nob", "numbnuts",
"nutsack", "nude", "orgy", "orgasm", "panty", "panties", "penis", "playboy",
"porn", "pussy", "pussies", "rape", "raping", "rapist", "rectum", "retard",
"rimming", "sadist", "sadism", "scrotum", "sex", "semen", "shemale", "she male",
"shit", "slut", "spunk", "strip club", "stripclub", "tit", "threesome",
"three some", "throating", "twat", "viagra", "vagina", "wank", "whore", "whoar",
"xxx"
]
def check_prompt_safety(prompt, unsafe_words_file='./profanity_words.txt'):
"""
Checking prompt safety. Returns boolean (Not Safe = False, Safe = True)
"""
# Load unsafe words from the provided file or use default if loading fails
unsafe_words = fetch_unsafe_words(unsafe_words_file)
# Convert input string to lowercase to ensure case-insensitive matching
prompt = prompt.lower()
# Check if any unsafe word is in the input string
for word in unsafe_words:
# Use regex to match whole words only
if re.search(r'\b' + re.escape(word) + r'\b', prompt):
return False
return True
class ModelManager:
def __init__(self, enable_nsfw=False, do_pre_download=False, do_debug_packages=False):
self.model_ig_list = IMAGE_GENERATION_MODELS
self.model_ie_list = IMAGE_EDITION_MODELS
self.model_vg_list = VIDEO_GENERATION_MODELS
self.excluding_model_list = MUSEUM_UNSUPPORTED_MODELS
self.desired_model_list = DESIRED_APPEAR_MODEL
self.enable_nsfw = enable_nsfw
self.load_guard(enable_nsfw)
self.loaded_models = {}
if do_pre_download:
pre_download_all_models()
if do_debug_packages:
debug_packages()
def load_model_pipe(self, model_name):
if not model_name in self.loaded_models:
pipe = load_pipeline(model_name)
self.loaded_models[model_name] = pipe
else:
pipe = self.loaded_models[model_name]
return pipe
def load_guard(self, enable_nsfw=True):
model_id = "meta-llama/Llama-Guard-3-8B"
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
token = os.getenv("HF_TOKEN") or os.getenv("HF_GUARD")
if enable_nsfw:
self.guard_tokenizer = AutoTokenizer.from_pretrained(model_id)
self.guard = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map=device)
else:
self.guard_tokenizer = None
self.guard = None
def NSFW_filter_simple(self, prompt):
is_safe = check_prompt_safety(prompt)
if is_safe:
return "safe"
else:
return "unsafe"
def NSFW_filter(self, prompt):
chat = [{"role": "user", "content": prompt}]
input_ids = self.guard_tokenizer.apply_chat_template(chat, return_tensors="pt").to('cuda')
self.guard.cuda()
if self.guard:
@spaces.GPU(duration=30)
def _generate():
return self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
output = _generate()
output = self.guard.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
prompt_len = input_ids.shape[-1]
result = self.guard_tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
return result
else:
# guard is disabled
return "safe"
@spaces.GPU(duration=120)
def generate_image_ig(self, prompt, model_name):
# if 'unsafe' not in self.NSFW_filter(prompt):
print('The prompt is safe')
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
# else:
# print(f'The prompt "{prompt}" is not safe')
# result = ''
return result
def generate_image_ig_api(self, prompt, model_name):
# if 'unsafe' not in self.NSFW_filter(prompt):
print('The prompt is safe')
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
# else:
# print(f'The prompt "{prompt}" is not safe')
# result = ''
return result
def generate_image_ig_museum(self, model_name):
model_name = model_name.split('_')[1]
result_list = draw_from_imagen_museum("t2i", model_name)
image_link = result_list[0]
prompt = result_list[1]
return image_link, prompt
def generate_image_ig_parallel_anony(self, prompt, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub")
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1], model_names[0], model_names[1]
def generate_image_ig_museum_parallel_anony(self, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ig_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_imagen_museum("t2i", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
return image_links[0], image_links[1], model_names[0], model_names[1], prompt_list[0]
def generate_image_ig_parallel(self, prompt, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_image_ig, prompt, model) if model.startswith("imagenhub")
else executor.submit(self.generate_image_ig_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1]
def generate_image_ig_museum_parallel(self, model_A, model_B):
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_A.split('_')[1]
model_2 = model_B.split('_')[1]
result_list = draw2_from_imagen_museum("t2i", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
return image_links[0], image_links[1], prompt_list[0]
@spaces.GPU(duration=200)
def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name):
# if 'unsafe' not in self.NSFW_filter(" ".join([textbox_source, textbox_target, textbox_instruct])):
pipe = self.load_model_pipe(model_name)
result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct)
# else:
# result = ''
return result
def generate_image_ie_museum(self, model_name):
model_name = model_name.split('_')[1]
result_list = draw_from_imagen_museum("tie", model_name)
image_links = result_list[0]
prompt_list = result_list[1]
# image_links = [src, model]
# prompt_list = [source_caption, target_caption, instruction]
return image_links[0], image_links[1], prompt_list[0], prompt_list[1], prompt_list[2]
def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image,
model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1]
def generate_image_ie_museum_parallel(self, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_imagen_museum("tie", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
# image_links = [src, model_A, model_B]
# prompt_list = [source_caption, target_caption, instruction]
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2]
def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1], model_names[0], model_names[1]
def generate_image_ie_museum_parallel_anony(self, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_ie_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_imagen_museum("tie", model_1, model_2)
image_links = result_list[0]
prompt_list = result_list[1]
# image_links = [src, model_A, model_B]
# prompt_list = [source_caption, target_caption, instruction]
return image_links[0], image_links[1], image_links[2], prompt_list[0], prompt_list[1], prompt_list[2], model_names[0], model_names[1]
@spaces.GPU(duration=150)
def generate_video_vg(self, prompt, model_name):
# if 'unsafe' not in self.NSFW_filter(prompt):
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
# else:
# result = ''
return result
def generate_video_vg_api(self, prompt, model_name):
# if 'unsafe' not in self.NSFW_filter(prompt):
pipe = self.load_model_pipe(model_name)
result = pipe(prompt=prompt)
# else:
# result = ''
return result
def generate_video_vg_museum(self, model_name):
model_name = model_name.split('_')[1]
result_list = draw_from_videogen_museum("t2v", model_name)
video_link = result_list[0]
prompt = result_list[1]
return video_link, prompt
def generate_video_vg_parallel_anony(self, prompt, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub")
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1], model_names[0], model_names[1]
def generate_video_vg_museum_parallel_anony(self, model_A, model_B):
# Using list comprehension to get the difference between two lists
picking_list = [item for item in self.model_vg_list if item not in self.excluding_model_list]
#picking_list = [item for item in picking_list if item not in self.desired_model_list]
if model_A == "" and model_B == "":
model_names = random.sample([model for model in picking_list], 2)
#override the random selection
#model_names[random.choice([0, 1])] = random.choice(self.desired_model_list)
else:
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_names[0].split('_')[1]
model_2 = model_names[1].split('_')[1]
result_list = draw2_from_videogen_museum("t2v", model_1, model_2)
video_links = result_list[0]
prompt_list = result_list[1]
return video_links[0], video_links[1], model_names[0], model_names[1], prompt_list[0]
def generate_video_vg_parallel(self, prompt, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.generate_video_vg, prompt, model) if model.startswith("videogenhub")
else executor.submit(self.generate_video_vg_api, prompt, model) for model in model_names]
results = [future.result() for future in futures]
return results[0], results[1]
def generate_video_vg_museum_parallel(self, model_A, model_B):
model_names = [model_A, model_B]
with concurrent.futures.ThreadPoolExecutor() as executor:
model_1 = model_A.split('_')[1]
model_2 = model_B.split('_')[1]
result_list = draw2_from_videogen_museum("t2v", model_1, model_2)
video_links = result_list[0]
prompt_list = result_list[1]
return video_links[0], video_links[1], prompt_list[0]