Spaces:
Restarting
on
Zero
Restarting
on
Zero
import fire | |
import time | |
import json | |
from collections import defaultdict | |
from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR | |
from .utils import detect_language, get_time_stamp_from_date, get_input_image_path, load_image_from_path | |
from tqdm import tqdm | |
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote", "chat"] | |
def remove_html(raw): | |
if raw.startswith("<h3>"): | |
return raw[raw.find(": ") + 2 : -len("</h3>\n")] | |
if raw.startswith("### Model A: ") or raw.startswith("### Model B: "): | |
return raw[13:] | |
return raw | |
def read_file(filename): | |
data = [] | |
for retry in range(5): | |
try: | |
# lines = open(filename).readlines() | |
for l in open(filename): | |
row = json.loads(l) | |
if row["type"] in VOTES: | |
data.append(row) | |
break | |
except FileNotFoundError: | |
time.sleep(2) | |
return data | |
def read_file_parallel(log_files, num_threads=16): | |
data_all = [] | |
from multiprocessing import Pool | |
with Pool(num_threads) as p: | |
ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files))) | |
for ret in ret_all: | |
data_all.extend(ret) | |
return data_all | |
def num_tokens(s:str): | |
if s is None: | |
return 0 | |
return len(s) / 4 | |
def main( | |
): | |
log_files = get_log_files() | |
data = read_file_parallel(log_files) | |
all_model_counts = defaultdict(int) | |
all_model_input_tokens_counts = defaultdict(list) | |
all_model_output_tokens_counts = defaultdict(list) | |
all_model_image_sizes = defaultdict(list) | |
chat_battle_counts = defaultdict(int) | |
for row in tqdm(data, desc="counting"): | |
if row['type'] == "chat": | |
chat_battle_counts["chat"] += 1 | |
all_model_counts[row['model']] += 1 | |
tstamp = row["tstamp"] | |
conv_id = row["state"]["conv_id"] | |
image = load_image_from_path(get_input_image_path(tstamp, conv_id)) | |
if image is None: | |
image_size = None | |
else: | |
image_size = load_image_from_path(get_input_image_path(tstamp, conv_id)).size | |
all_model_image_sizes[row['model']].append(image_size) | |
try: | |
for message in row["state"]["messages"][row["state"]["offset"] :: 2]: | |
all_model_input_tokens_counts[row['model']].append(num_tokens(message[1])) | |
for message in row["state"]["messages"][row["state"]["offset"] + 1 :: 2]: | |
all_model_output_tokens_counts[row['model']].append(num_tokens(message[1])) | |
except Exception as e: | |
print(row) | |
raise e | |
else: | |
chat_battle_counts[row['type']] += 1 | |
if row["models"][0] is None or row["models"][1] is None: | |
continue | |
# Resolve model names | |
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])] | |
if "model_name" in row["states"][0]: | |
models_hidden = [ | |
row["states"][0]["model_name"], | |
row["states"][1]["model_name"], | |
] | |
if models_hidden[0] is None: | |
models_hidden = models_public | |
else: | |
models_hidden = models_public | |
if (models_public[0] == "" and models_public[1] != "") or ( | |
models_public[1] == "" and models_public[0] != "" | |
): | |
continue | |
if models_public[0] == "" or models_public[0] == "Model A": | |
anony = True | |
models = models_hidden | |
else: | |
anony = False | |
models = models_public | |
if not models_public == models_hidden: | |
continue | |
all_model_counts[models[0]] += 1 | |
all_model_counts[models[1]] += 1 | |
tstamp = row["tstamp"] | |
conv_id1 = row["states"][0]["conv_id"] | |
conv_id2 = row["states"][1]["conv_id"] | |
image1 = load_image_from_path(get_input_image_path(tstamp, conv_id1)) | |
image2 = load_image_from_path(get_input_image_path(tstamp, conv_id2)) | |
all_model_image_sizes[models[0]].append(None if image1 is None else image1.size) | |
all_model_image_sizes[models[1]].append(None if image2 is None else image2.size) | |
for message in row["states"][0]["messages"][row["states"][0]["offset"] :: 2]: | |
all_model_input_tokens_counts[models[0]].append(num_tokens(message[1])) | |
for message in row["states"][0]["messages"][row["states"][0]["offset"] + 1 :: 2]: | |
all_model_output_tokens_counts[models[0]].append(num_tokens(message[1])) | |
for message in row["states"][1]["messages"][row["states"][1]["offset"] :: 2]: | |
all_model_input_tokens_counts[models[1]].append(num_tokens(message[1])) | |
for message in row["states"][1]["messages"][row["states"][1]["offset"] + 1 :: 2]: | |
all_model_output_tokens_counts[models[1]].append(num_tokens(message[1])) | |
print("### Chat battle counts (requests)") | |
print(json.dumps(chat_battle_counts, indent=4)) | |
print("### Model counts (requests)") | |
print(json.dumps(all_model_counts, indent=4)) | |
print("### Model Avg input tokens counts (tokens)") | |
average_input_tokens_counts = {} | |
for model, counts in all_model_input_tokens_counts.items(): | |
average_input_tokens_counts[model] = sum(counts) / len(counts) | |
print(json.dumps(average_input_tokens_counts, indent=4)) | |
print("### Model AVg output tokens counts (tokens)") | |
average_output_tokens_counts = {} | |
for model, counts in all_model_output_tokens_counts.items(): | |
average_output_tokens_counts[model] = sum(counts) / len(counts) | |
print(json.dumps(average_output_tokens_counts, indent=4)) | |
print("### Model Avg image sizes (height, width)") | |
average_image_sizes = {} | |
for model, sizes in all_model_image_sizes.items(): | |
avg_height = sum([size[0] for size in sizes if size is not None]) / len(sizes) | |
avg_width = sum([size[1] for size in sizes if size is not None]) / len(sizes) | |
average_image_sizes[model] = (avg_height, avg_width) | |
print(json.dumps(average_image_sizes, indent=4)) | |
print("### GPT-4V estimated cost (USD)") | |
gpt_4v_name = "gpt-4-vision-preview" | |
gpt_4v_cost = {} | |
gpt_4v_cost['input'] = sum(all_model_input_tokens_counts[gpt_4v_name]) / 1000 * 0.01 | |
gpt_4v_cost['output'] = sum(all_model_output_tokens_counts[gpt_4v_name]) / 1000 * 0.03 | |
all_image_cost = 0 | |
for size in all_model_image_sizes[gpt_4v_name]: | |
if size is None: | |
continue | |
all_image_tokens = (size[0] // 512 + 1) * (size[1] // 512 + 1) * 170 + 85 | |
all_image_cost += all_image_tokens / 1000 * 0.01 | |
gpt_4v_cost['image'] = all_image_cost | |
print(json.dumps(gpt_4v_cost, indent=4)) | |
if __name__ == "__main__": | |
fire.Fire(main) |