tianleliphoebe's picture
Reinitialize
e368cec
import fire
import time
import json
from collections import defaultdict
from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR
from .utils import detect_language, get_time_stamp_from_date, get_input_image_path, load_image_from_path
from tqdm import tqdm
VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote", "chat"]
def remove_html(raw):
if raw.startswith("<h3>"):
return raw[raw.find(": ") + 2 : -len("</h3>\n")]
if raw.startswith("### Model A: ") or raw.startswith("### Model B: "):
return raw[13:]
return raw
def read_file(filename):
data = []
for retry in range(5):
try:
# lines = open(filename).readlines()
for l in open(filename):
row = json.loads(l)
if row["type"] in VOTES:
data.append(row)
break
except FileNotFoundError:
time.sleep(2)
return data
def read_file_parallel(log_files, num_threads=16):
data_all = []
from multiprocessing import Pool
with Pool(num_threads) as p:
ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files)))
for ret in ret_all:
data_all.extend(ret)
return data_all
def num_tokens(s:str):
if s is None:
return 0
return len(s) / 4
def main(
):
log_files = get_log_files()
data = read_file_parallel(log_files)
all_model_counts = defaultdict(int)
all_model_input_tokens_counts = defaultdict(list)
all_model_output_tokens_counts = defaultdict(list)
all_model_image_sizes = defaultdict(list)
chat_battle_counts = defaultdict(int)
for row in tqdm(data, desc="counting"):
if row['type'] == "chat":
chat_battle_counts["chat"] += 1
all_model_counts[row['model']] += 1
tstamp = row["tstamp"]
conv_id = row["state"]["conv_id"]
image = load_image_from_path(get_input_image_path(tstamp, conv_id))
if image is None:
image_size = None
else:
image_size = load_image_from_path(get_input_image_path(tstamp, conv_id)).size
all_model_image_sizes[row['model']].append(image_size)
try:
for message in row["state"]["messages"][row["state"]["offset"] :: 2]:
all_model_input_tokens_counts[row['model']].append(num_tokens(message[1]))
for message in row["state"]["messages"][row["state"]["offset"] + 1 :: 2]:
all_model_output_tokens_counts[row['model']].append(num_tokens(message[1]))
except Exception as e:
print(row)
raise e
else:
chat_battle_counts[row['type']] += 1
if row["models"][0] is None or row["models"][1] is None:
continue
# Resolve model names
models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])]
if "model_name" in row["states"][0]:
models_hidden = [
row["states"][0]["model_name"],
row["states"][1]["model_name"],
]
if models_hidden[0] is None:
models_hidden = models_public
else:
models_hidden = models_public
if (models_public[0] == "" and models_public[1] != "") or (
models_public[1] == "" and models_public[0] != ""
):
continue
if models_public[0] == "" or models_public[0] == "Model A":
anony = True
models = models_hidden
else:
anony = False
models = models_public
if not models_public == models_hidden:
continue
all_model_counts[models[0]] += 1
all_model_counts[models[1]] += 1
tstamp = row["tstamp"]
conv_id1 = row["states"][0]["conv_id"]
conv_id2 = row["states"][1]["conv_id"]
image1 = load_image_from_path(get_input_image_path(tstamp, conv_id1))
image2 = load_image_from_path(get_input_image_path(tstamp, conv_id2))
all_model_image_sizes[models[0]].append(None if image1 is None else image1.size)
all_model_image_sizes[models[1]].append(None if image2 is None else image2.size)
for message in row["states"][0]["messages"][row["states"][0]["offset"] :: 2]:
all_model_input_tokens_counts[models[0]].append(num_tokens(message[1]))
for message in row["states"][0]["messages"][row["states"][0]["offset"] + 1 :: 2]:
all_model_output_tokens_counts[models[0]].append(num_tokens(message[1]))
for message in row["states"][1]["messages"][row["states"][1]["offset"] :: 2]:
all_model_input_tokens_counts[models[1]].append(num_tokens(message[1]))
for message in row["states"][1]["messages"][row["states"][1]["offset"] + 1 :: 2]:
all_model_output_tokens_counts[models[1]].append(num_tokens(message[1]))
print("### Chat battle counts (requests)")
print(json.dumps(chat_battle_counts, indent=4))
print("### Model counts (requests)")
print(json.dumps(all_model_counts, indent=4))
print("### Model Avg input tokens counts (tokens)")
average_input_tokens_counts = {}
for model, counts in all_model_input_tokens_counts.items():
average_input_tokens_counts[model] = sum(counts) / len(counts)
print(json.dumps(average_input_tokens_counts, indent=4))
print("### Model AVg output tokens counts (tokens)")
average_output_tokens_counts = {}
for model, counts in all_model_output_tokens_counts.items():
average_output_tokens_counts[model] = sum(counts) / len(counts)
print(json.dumps(average_output_tokens_counts, indent=4))
print("### Model Avg image sizes (height, width)")
average_image_sizes = {}
for model, sizes in all_model_image_sizes.items():
avg_height = sum([size[0] for size in sizes if size is not None]) / len(sizes)
avg_width = sum([size[1] for size in sizes if size is not None]) / len(sizes)
average_image_sizes[model] = (avg_height, avg_width)
print(json.dumps(average_image_sizes, indent=4))
print("### GPT-4V estimated cost (USD)")
gpt_4v_name = "gpt-4-vision-preview"
gpt_4v_cost = {}
gpt_4v_cost['input'] = sum(all_model_input_tokens_counts[gpt_4v_name]) / 1000 * 0.01
gpt_4v_cost['output'] = sum(all_model_output_tokens_counts[gpt_4v_name]) / 1000 * 0.03
all_image_cost = 0
for size in all_model_image_sizes[gpt_4v_name]:
if size is None:
continue
all_image_tokens = (size[0] // 512 + 1) * (size[1] // 512 + 1) * 170 + 85
all_image_cost += all_image_tokens / 1000 * 0.01
gpt_4v_cost['image'] = all_image_cost
print(json.dumps(gpt_4v_cost, indent=4))
if __name__ == "__main__":
fire.Fire(main)