import concurrent.futures import random import gradio as gr import requests import io, base64, json import spaces from PIL import Image from .models import IMAGE_GENERATION_MODELS, IMAGE_EDITION_MODELS, load_pipeline class ModelManager: def __init__(self): self.model_ig_list = IMAGE_GENERATION_MODELS self.model_ie_list = IMAGE_EDITION_MODELS self.loaded_models = {} def load_model_pipe(self, model_name): if not model_name in self.loaded_models: pipe = load_pipeline(model_name) self.loaded_models[model_name] = pipe else: pipe = self.loaded_models[model_name] return pipe @spaces.GPU(duration=60) def generate_image_ig(self, prompt, model_name): pipe = self.load_model_pipe(model_name) result = pipe(prompt=prompt) return result def generate_image_ig_parallel_anony(self, prompt, model_A, model_B): if model_A == "" and model_B == "": model_names = random.sample([model for model in self.model_ig_list], 2) else: model_names = [model_A, model_B] results = [] with concurrent.futures.ThreadPoolExecutor() as executor: future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names} for future in concurrent.futures.as_completed(future_to_result): result = future.result() results.append(result) return results[0], results[1], model_names[0], model_names[1] def generate_image_ig_parallel(self, prompt, model_A, model_B): results = [] model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: future_to_result = {executor.submit(self.generate_image_ig, prompt, model): model for model in model_names} for future in concurrent.futures.as_completed(future_to_result): result = future.result() results.append(result) return results[0], results[1] @spaces.GPU(duration=150) def generate_image_ie(self, textbox_source, textbox_target, textbox_instruct, source_image, model_name): pipe = self.load_model_pipe(model_name) if 'PNP' in model_name: result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct, num_inversion_steps=100) elif 'Prompt2prompt' in model_name: result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct, num_inner_steps=5) else: result = pipe(src_image = source_image, src_prompt = textbox_source, target_prompt = textbox_target, instruct_prompt = textbox_instruct) return result def generate_image_ie_parallel(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): results = [] model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names} for future in concurrent.futures.as_completed(future_to_result): result = future.result() results.append(result) return results[0], results[1] def generate_image_ie_parallel_anony(self, textbox_source, textbox_target, textbox_instruct, source_image, model_A, model_B): if model_A == "" and model_B == "": model_names = random.sample([model for model in self.model_ie_list], 2) else: model_names = [model_A, model_B] results = [] # model_names = [model_A, model_B] with concurrent.futures.ThreadPoolExecutor() as executor: future_to_result = {executor.submit(self.generate_image_ie, textbox_source, textbox_target, textbox_instruct, source_image, model): model for model in model_names} for future in concurrent.futures.as_completed(future_to_result): result = future.result() results.append(result) return results[0], results[1], model_names[0], model_names[1]