Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,765 Bytes
2107a44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import os
import regex as re
import importlib
from string import Template
from typing import List
from tqdm import tqdm
TEMPLATE = """You are evaluating errors in a model-generated output for a given instruction.
Instruction:
${generation_instruction}
${input_context}
Model-generated Output:
${hypothesis_output}
For each error you give in the response, please also elaborate the following information:
- error location (the words that are wrong in the output)
- error aspect it belongs to.
- explanation why it's an error, and the correction suggestions.
- severity of the error ("Major" or "Minor").
- reduction of score (between 0.5 and 5 given the severity of the error)
Your evaluation output:
"""
class TIGERScorer(object):
def __init__(self, model_name, quantized=False, use_vllm=False, use_llamacpp=False):
"""Initialize the TIGERScore model.
Args:
model_name:
basic model names:
- "TIGER-Lab/TIGERScore-7B",
- "TIGER-Lab/TIGERScore-13B",
for llamacpp models:
- "TIGER-Lab/TIGERScore-7B-GGUF",
- "TIGER-Lab/TIGERScore-13B-GGUF",
quantized (Run on GPU):
If true, load the 4-bit quantized version of the model.
quantized version occupies 2-3 times less memory but will running slower.
use_vllm (Run on GPU):
If true, use the VLLM version of the model. The inference speed can be 0.2s per input.
if false, use the Hugging face inference API. The inference speed can be slower.
vllm currently does not work with quantized models, so quantized will be ignored if use_vllm is true.
use_llamacpp (Run on CPU):
True indicates that the model_name is a path to a llamacpp model to run on the CPU.
Will ignore use_vllm if True.
"""
self.model_name = model_name
self.use_vllm = use_vllm
self.quantized = quantized
self.use_llamacpp = use_llamacpp
self.tokenizer = None
if use_llamacpp:
if use_vllm:
print("Warning: use_vllm is ignored when use_llamacpp is True.")
# assert model_name.endswith(".gguf"), "llamacpp model name should end with .gguf, please check if this model is a valid llamacpp model."
if not os.path.exists(model_name):
from huggingface_hub import hf_hub_download
import llama_cpp
model_path = hf_hub_download(repo_id=model_name, filename="ggml-model-q4_0.gguf")
self.model = llama_cpp.Llama(model_path, n_ctx=1024)
else:
self.model = llama_cpp.Llama(model_name, n_ctx=1024)
elif use_vllm:
import torch
import vllm
num_gpus = torch.cuda.device_count()
self.model = vllm.LLM(model_name, dtype=torch.bfloat16, tensor_parallel_size=num_gpus)
else:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
if quantized:
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True,
)
else:
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
padding_side="left",
)
self.template = Template(TEMPLATE)
def decode_tigerscore_output(self, output):
"""Decode the output of TIGERScore model into structured error explanations.
Args:
output (str):
the output of TIGERScore model.
Returns:
errors (List[Dict]):
structured error explanations for each error in the output.
Each error explanation is a dictionary with the following fields:
- error_location (str): the words that are wrong in the output
- error_aspect (str): the aspect of the error
- error_explanation (str): explanation why it's an error, and the correction suggestions
- error_severity (str): severity of the error ("Major" or "Minor")
- score_reduction (float): reduction of score (between 0.5 and 5 given the severity of the error)
There can be multiple errors in each input.
"""
result = {}
result['num_errors'] = re.search(
r"(?<=The model-generated output contains )\d+(?= errors)", output).group(0)
result['score'] = re.search(
r"(?<=, with a total score reduction of )\d+", output).group(0)
result['num_errors'] = int(result['num_errors'])
result['score'] = -float(result['score'])
result['errors'] = {}
error_locations = re.findall(
r"(?<=Error location \d+:[ \n]*).*?(?=\n)", output)
error_aspects = re.findall(r"(?<=Error aspect \d+:[ \n]*).*?(?=\n)", output)
error_explanations = re.findall(
r"(?<=Explanation \d+:[ \n]*).*?(?=\n)", output)
error_severities = re.findall(r"(?<=Severity \d+:[ \n]*).*?(?=\n)", output)
score_reductions = re.findall(
r"(?<=\nScore reduction \d+:[ \n]*)(\d+\.\d+|\d+)", output)
assert len(error_locations) == len(error_aspects) == len(error_explanations) == len(error_severities) == len(score_reductions), \
"The number of errors does not match."
for i in range(len(error_locations)):
error = {}
error['location'] = error_locations[i].strip("\n ")
error['aspect'] = error_aspects[i].strip("\n ")
error['explanation'] = error_explanations[i].strip("\n ")
error['severity'] = error_severities[i].strip("\n ")
error['score_reduction'] = score_reductions[i].strip("\n ")
result['errors'][f"error_{i}"] = error
return result
def _run_batch(self, prompts: List[str], **generate_kwargs):
"""Internal function to score a batch of inputs.
Args:
prompts (List[str]):
a list of prompts.
generate_kwargs:
keyword arguments for the model.generate() method.
See https://huggingface.co/transformers/main_classes/model.html
Returns:
completions (List[str]):
"""
encodings = self.tokenizer(prompts, return_tensors="pt", padding=True,
truncation=True, max_length=self.tokenizer.model_max_length)
input_ids = encodings["input_ids"].to(self.model.device)
attention_mask = encodings["attention_mask"].to(self.model.device)
gen_params = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"max_new_tokens": 1024,
"do_sample": False,
"top_p": 1.0,
"temperature": 0.7,
"num_return_sequences": 1,
}
gen_params.update(generate_kwargs)
outputs = self.model.generate(**gen_params)
# input_len = input_ids.shape[1]
# completion_ids = [output[input_len:] for output in outputs]
completion_ids = outputs
completions = [self.tokenizer.decode(
completion, skip_special_tokens=True) for completion in completion_ids]
return completions
def generate_stream(self, instruction, hypo_output, input_context=None, **generate_kwargs):
prompt_template = self.template
prompt = prompt_template.substitute(
generation_instruction=instruction,
input_context=input_context,
hypothesis_output=hypo_output
).strip("\n ")
if self.use_llamacpp:
gen_params = {
"max_tokens": generate_kwargs.get("max_new_tokens", 1024),
"top_p": generate_kwargs.get("top_p", 1.0),
"top_k": generate_kwargs.get("top_k", 40),
"temperature": generate_kwargs.get("temperature", 0.7),
"frequency_penalty": generate_kwargs.get("frequency_penalty", 0.0),
"presence_penalty": generate_kwargs.get("presence_penalty", 0.0),
"echo": False,
"stream": True
}
unused_params = [key for key in generate_kwargs.keys() if key not in gen_params]
if len(unused_params) > 0:
print(f"Warning: the following parameters are not used in llamacpp inference: {unused_params}")
output = ""
for _output in self.model(prompt, **gen_params):
output += _output["choices"][0]["text"]
yield output
elif self.use_vllm:
raise NotImplementedError("VLLM does not support streaming generation.")
else:
from transformers import TextIteratorStreamer, pipeline
from threading import Thread
streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True)
encodings = self.tokenizer(prompt, return_tensors="pt", padding=True,
truncation=True, max_length=self.tokenizer.model_max_length)
input_ids = encodings["input_ids"].to(self.model.device)
attention_mask = encodings["attention_mask"].to(self.model.device)
gen_params = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"max_new_tokens": 1024,
"do_sample": False,
"top_p": 1.0,
"temperature": 0.7,
"num_return_sequences": 1,
"streamer": streamer,
}
gen_params.update(generate_kwargs)
thread = Thread(target=self.model.generate, kwargs=gen_params)
thread.start()
output = ""
for _output in streamer:
output += _output
yield output
# return output
def score(
self,
insts: List[str],
hypo_outputs: List[str],
input_contexts: List[str]=None,
batch_size: int = 2,
**generate_kwargs
):
"""Score and identify errors in the model-generated outputs
Example Usage:
```python
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from datasets import load_dataset
from tigerscore import TIGERScorer
scorer = TIGERScorer(model_size="7b", quantized=True)
dataset = load_dataset("TIGER-Lab/MetricInstruct")
num_few_examples = 10
tasks = dataset["train_mix"]['task'][0:num_few_examples]
insts = dataset["train_mix"]['instruction'][0:num_few_examples]
input_contexts = dataset["train_mix"]['input_context'][0:num_few_examples]
hypo_output = dataset["train_mix"]['hypo_output'][0:num_few_examples]
results = scorer.score(tasks, insts, input_contexts, hypo_output)
scores = [result["score"] for result in results]
print(results)
```
Args:
insts:
a list of instruction strings; One instruction example is:
"Translate the following text from German to English."
A instruction is a short description of the task.
It contains specific requirements for the model-generated output.
hypo_outputs:
a list of hypothesis outputs; One hypothesis output example is the model-generated English translation.
input_contexts:
a list of input contexts; One input context example is the source German text.
batch_size:
batch size for scoring.
use_vllm:
if True, use VLLM to inference.
generate_kwargs:
keyword arguments for the model.generate() method.
See https://huggingface.co/transformers/main_classes/model.html
Returns:
results (List[Dict]):
Contains the following fields:
- score (float): the TIGERScore score for the input.
- num_errors (int): the number of errors in the input.
- errors (List[Dict]): structured error explanations for each error in the input.
- location (str): the words that are wrong in the output
- aspect (str): the aspect of the error
- explanation (str): explanation why it's an error, and the correction suggestions
- severity (str): severity of the error ("Major" or "Minor")
- reduction (float): reduction of score (between 0.5 and 5 given the severity of the error)
- raw_output (str): the raw output of the TIGERScore model.
"""
assert len(insts) == len(input_contexts) == len(hypo_outputs), \
"The number of inputs does not match."
prompt_template = self.template
prompts = [
prompt_template.substitute(
generation_instruction=inst,
input_context=input_context,
hypothesis_output=hypo_output
).strip("\n ")
for inst, input_context, hypo_output in zip(insts, input_contexts, hypo_outputs)
]
if self.use_llamacpp:
gen_params = {
"max_tokens": generate_kwargs.get("max_new_tokens", 1024),
"top_p": generate_kwargs.get("top_p", 1.0),
"top_k": generate_kwargs.get("top_k", 40),
"temperature": generate_kwargs.get("temperature", 0.7),
"frequency_penalty": generate_kwargs.get("frequency_penalty", 0.0),
"presence_penalty": generate_kwargs.get("presence_penalty", 0.0),
"echo": False,
"stream": generate_kwargs.get("stream", False),
}
unused_params = [key for key in generate_kwargs.keys() if key not in gen_params]
if len(unused_params) > 0:
print(f"Warning: the following parameters are not used in llamacpp inference: {unused_params}")
outputs = []
for prompt in tqdm(prompts, desc="TIGERScore (llamacpp) Batch Scoring"):
output = self.model(prompt, **gen_params)
outputs.append(output)
completions = [output['choices'][0]['text'] for output in outputs]
elif self.use_vllm:
import vllm
sampling_params = vllm.SamplingParams(
max_tokens=1024,
top_p=1.0,
temperature=0.7,
n=1,
)
for key, value in generate_kwargs.items():
if hasattr(sampling_params, key):
setattr(sampling_params, key, value)
vllm_outputs = self.model.generate(
prompts,
sampling_params=sampling_params,
)
completions = [output.outputs[0].text for output in vllm_outputs]
else:
completions = []
for i in tqdm(
range(0, len(prompts), batch_size),
desc="TIGERScore Batch Scoring",
total=len(prompts) // batch_size + 1
):
batch_prompts = prompts[i:i+batch_size]
batch_completions = self._run_batch(batch_prompts, **generate_kwargs)
completions.extend(batch_completions)
tigerscore_results = []
for completion in completions:
try:
result = self.decode_tigerscore_output(completion)
result['score'] = result['score']
result['num_errors'] = result['num_errors']
result['errors'] = result['errors']
except Exception:
result = {}
result['score'] = None
result['num_errors'] = None
result['errors'] = None
result['raw_output'] = completion
tigerscore_results.append(result)
return tigerscore_results
if __name__ == "__main__":
instruction = "Write an apology letter."
input_context = "Reason: You canceled a plan at the last minute due to illness."
hypo_output = "Hey [Recipient],\n\nI'm really sorry for ditching our plan. I suddenly got an opportunity for a vacation so I took it. I know this might have messed up your plans and I regret that.\n\nDespite being under the weather, I would rather go for an adventure. I hope you can understand my perspective and I hope this incident doesn't change anything between us.\n\nWe can reschedule our plan for another time. Sorry again for the trouble.\n\nPeace out,\n[Your Name]\n\n---"
# scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-7B")
scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-7B", quantized=True)
# scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-7B", use_vllm=True)
# scorer = TIGERScorer(model_name="TIGER-Lab/TIGERScore-7B-GGUF", use_llamacpp=True)
results = scorer.score([instruction], [hypo_output], [input_context])
print(results)
# {
# "num_errors": 2,
# "score": -8.0,
# "errors": {
# "error_0": {
# "location": "I suddenly got an opportunity for a vacation so I took it.",
# "aspect": "Incorrect reasoning",
# "explanation": "The error is in the reasoning provided for the cancellation. The original reason was due to illness, but the model generated an apology letter implying that the cancellation was due to a vacation opportunity, which is incorrect. The correction would be to maintain the original reason for the cancellation.",
# "severity": "Major",
# "score_reduction": "4.0"
# },
# "error_1": {
# "location": "Hey [Recipient]",
# "aspect": "Inappropriate language or tone",
# "explanation": "The opening salutation used by the model is too informal and not appropriate for an apology letter. The correction would be to use a more formal and respectful salutation such as \"Dear [Recipient]\".",
# "severity": "Major",
# "score_reduction": "4.0"
# }
# },
# } |