|
import pandas as pd |
|
import gradio as gr |
|
import csv |
|
import json |
|
import os |
|
import shutil |
|
from huggingface_hub import Repository |
|
|
|
HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") |
|
|
|
MODEL_INFO = [ |
|
"Model", |
|
"Avg", |
|
"Visual Quality", |
|
"Temporal Consistency", |
|
"Dynamic Degree", |
|
"Text-to-Video Alignment", |
|
"Factual Consistency" |
|
] |
|
|
|
DATA_TITILE_TYPE = ['markdown', 'number', 'number', 'number', 'number', 'number',] |
|
|
|
SUBMISSION_NAME = "VideoScore-Leaderboard" |
|
SUBMISSION_URL = os.path.join("https://huggingface.co/datasets/hexuan21/", SUBMISSION_NAME) |
|
CSV_DIR = "./VideoScore-Leaderboard/leaderboard_res.csv" |
|
|
|
COLUMN_NAMES = MODEL_INFO |
|
|
|
LEADERBORAD_INTRODUCTION = """# VideoScore Leaderboard |
|
|
|
π Welcome to the **VideoScore Leaderboard**! The leaderboard covers many popular text-to-video generative models and evaluates them on 5 dimensions: <br> |
|
|
|
"Visual Quality", "Temporal Consistency", "Dynamic Degree", "Text-to-Video Alignment", "Factual Consistency" |
|
|
|
We sample 200 prompts from <a href="https://arxiv.org/abs/2403.06098">VidProM</a> to generate 200 videos using various T2V models (for those closed-source model, we generate 100). |
|
|
|
<a href='https://hits.seeyoufarm.com'><img src='https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fhuggingface.co%2Fspaces%2FTIGER-Lab%2FVideoScore-Leaderboard&count_bg=%23C7C83D&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=hits&edge_flat=false'></a> |
|
""" |
|
|
|
TABLE_INTRODUCTION = """ |
|
""" |
|
|
|
LEADERBORAD_INFO = """ |
|
""" |
|
|
|
CITATION_BUTTON_LABEL = "Copy the following snippet to cite the t2v models and the used metrics" |
|
CITATION_BUTTON_TEXT = r""" |
|
|
|
|
|
""" |
|
|
|
def get_df(): |
|
repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN) |
|
repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df['Model'] = df['Model'].apply(lambda x: f"[{x.split(']')[0][1:]}]({x.split('(')[1][:-1]})") |
|
df['Avg'] = df[["Visual Quality", |
|
"Temporal Consistency", |
|
"Dynamic Degree", |
|
"Text-to-Video Alignment", |
|
"Factual Consistency"]].mean(axis=1).round(2) |
|
df = df.sort_values(by=['Avg'], ascending=False) |
|
return df[COLUMN_NAMES] |
|
|
|
|
|
def refresh_data(): |
|
return get_df() |