Spaces:
Sleeping
Sleeping
File size: 1,249 Bytes
706626a 3fedf2b 706626a 64c2ffd 706626a 3fedf2b 706626a 64c2ffd 706626a 64c2ffd 3fedf2b 64c2ffd 706626a 64c2ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import requests
import geopy
import joblib
import gradio as gr
# Load the trained model
model = joblib.load('hackathonrf.joblib')
# Function to get latitude and longitude from location name
def get_coordinates(location):
geolocator = geopy.geocoders.Nominatim(user_agent="air_quality_app")
location = geolocator.geocode(location)
return location.latitude, location.longitude
# Function to get AQI value from OpenWeatherMap API
def get_aqi(latitude, longitude, api_key):
url = f"http://api.openweathermap.org/data/2.5/air_pollution/history?lat={latitude}&lon={longitude}&start=1614556800&end=1614643200&appid=78b94879cbb50e02397e93687aa24adc"
return aqi_value
# Function to make prediction
def predict_air_quality(location, api_key):
latitude, longitude = get_coordinates(location)
aqi_value = get_aqi(latitude, longitude, api_key)
prediction = model.predict([[aqi_value, aqi_value, aqi_value, aqi_value]])
return prediction[0]
# Create Gradio interface
iface = gr.Interface(fn=predict_air_quality,
inputs=["text", "text"],
outputs="text",
title="Air Quality Prediction",
description="Enter location:")
iface.launch() |