Spaces:
Sleeping
Sleeping
import requests | |
import geopy | |
import joblib | |
import gradio as gr | |
# Load the trained model | |
model = joblib.load('hackathonrf.joblib') | |
# Define AQI category labels | |
aqi_labels = { | |
0: 'good', | |
1: 'moderate', | |
2: 'unhealthy_sensitive', | |
3: 'unhealthy', | |
4: 'very_unhealthy', | |
5: 'hazardous' | |
} | |
# Function to get latitude and longitude from location name | |
def get_coordinates(location): | |
geolocator = geopy.geocoders.Nominatim(user_agent="air_quality_app") | |
location = geolocator.geocode(location) | |
return location.latitude, location.longitude | |
# Function to get AQI value from OpenWeatherMap API | |
def get_aqi(latitude, longitude): | |
api_key = "78b94879cbb50e02397e93687aa24adc" # Hidden API Key | |
url = f"http://api.openweathermap.org/data/2.5/air_pollution?lat={latitude}&lon={longitude}&appid={api_key}" | |
response = requests.get(url) | |
data = response.json() | |
aqi_value = data['list'][0]['main']['aqi'] | |
return aqi_value | |
# Function to make prediction | |
def predict_air_quality(location): | |
latitude, longitude = get_coordinates(location) | |
aqi_value = get_aqi(latitude, longitude) | |
prediction = model.predict([[aqi_value, aqi_value, aqi_value, aqi_value]]) | |
label_string = aqi_labels[prediction[0]] | |
return f"{location} air quality is currently '{label_string}'" | |
# Create Gradio interface | |
iface = gr.Interface(fn=predict_air_quality, | |
inputs=["text"], | |
outputs="text", | |
title="Air Quality Prediction", | |
description="Enter location:") | |
iface.launch() | |