import random import gradio as gr import os import torch from torch import autocast from diffusers import LMSDiscreteScheduler from japanese_stable_diffusion import JapaneseStableDiffusionPipeline from PIL import Image from dotenv import load_dotenv load_dotenv() ACCESS_TOKEN = os.getenv("ACCESS_TOKEN") model_id = "rinna/japanese-stable-diffusion" device = "cuda" if torch.cuda.is_available() else "cpu" scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = JapaneseStableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, use_auth_token=ACCESS_TOKEN) pipe.to(device) pipe.unet.half() pipe.text_encoder.half() #torch.backends.cudnn.benchmark = True def infer( prompt, n_samples=4, guidance_scale=7.5, steps=50, seed="random", ): if seed == "random": generator = torch.Generator(device=device).manual_seed(int(random.randint(0, 2 ** 32))) else: generator = torch.Generator(device=device).manual_seed(int(seed)) with autocast("cuda"): images_list = pipe( prompt=[prompt] * int(n_samples), guidance_scale=guidance_scale, num_inference_steps=int(steps), generator=generator ) images = [] safe_image = Image.open(r"nsfw.png") for i, image in enumerate(images_list.images): if (images_list["nsfw_content_detected"][i]): images.append(safe_image) else: images.append(image) return images css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } """ block = gr.Blocks(css=css) examples = [ ["サラリーマン 油絵", 2, 7.5, 50, "random"], ["キラキラ瞳の猫", 2, 7.5, 50, "random"], ["夕暮れの神社の夏祭りを描いた水彩画", 2, 7.5, 50, "random"] ] with block: gr.HTML( """
Japanese Stable Diffusion is a Japanese-language specific latent text-to-image diffusion model.