File size: 15,571 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
from einops import rearrange, repeat
import torch
import torch.nn as nn

from risk_biased.models.cvae_params import CVAEParams
from risk_biased.models.nn_blocks import (
    MCG,
    MAB,
    MHB,
    SequenceDecoderLSTM,
    SequenceDecoderMLP,
    SequenceEncoderLSTM,
    SequenceEncoderMLP,
    SequenceEncoderMaskedLSTM,
)


class DecoderNN(nn.Module):
    """Decoder neural network that decodes input tensors into a single output tensor.
    It contains an interaction layer that (re-)compute the interactions between the agents in the scene.
    This implies that a given latent sample for one agent will be affecting the predictions of the othe agents too.

    Args:
        params: dataclass defining the necessary parameters

    """

    def __init__(
        self,
        params: CVAEParams,
    ) -> None:
        super().__init__()
        self.dt = params.dt
        self.state_dim = params.state_dim
        self.dynamic_state_dim = params.dynamic_state_dim
        self.hidden_dim = params.hidden_dim
        self.num_steps_future = params.num_steps_future
        self.latent_dim = params.latent_dim

        if params.sequence_encoder_type == "MLP":
            self._agent_encoder_past = SequenceEncoderMLP(
                params.state_dim,
                params.hidden_dim,
                params.num_hidden_layers,
                params.num_steps,
                params.is_mlp_residual,
            )
        elif params.sequence_encoder_type == "LSTM":
            self._agent_encoder_past = SequenceEncoderLSTM(
                params.state_dim, params.hidden_dim
            )
        elif params.sequence_encoder_type == "maskedLSTM":
            self._agent_encoder_past = SequenceEncoderMaskedLSTM(
                params.state_dim, params.hidden_dim
            )
        else:
            raise RuntimeError(
                f"Got sequence encoder type {params.sequence_decoder_type} but only knows one of: 'MLP', 'LSTM', 'maskedLSTM' "
            )

        self._combine_z_past = nn.Linear(
            params.hidden_dim + params.latent_dim, params.hidden_dim
        )

        if params.interaction_type == "Attention" or params.interaction_type == "MAB":
            self._interaction = MAB(
                params.hidden_dim, params.num_attention_heads, params.num_blocks
            )
        elif (
            params.interaction_type == "ContextGating"
            or params.interaction_type == "MCG"
        ):
            self._interaction = MCG(
                params.hidden_dim,
                params.mcg_dim_expansion,
                params.mcg_num_layers,
                params.num_blocks,
                params.is_mlp_residual,
            )
        elif params.interaction_type == "Hybrid" or params.interaction_type == "MHB":
            self._interaction = MHB(
                params.hidden_dim,
                params.num_attention_heads,
                params.mcg_dim_expansion,
                params.mcg_num_layers,
                params.num_blocks,
                params.is_mlp_residual,
            )
        else:
            self._interaction = lambda x, *args, **kwargs: x

        if params.sequence_decoder_type == "MLP":
            self._decoder = SequenceDecoderMLP(
                params.hidden_dim,
                params.num_hidden_layers,
                params.num_steps_future,
                params.is_mlp_residual,
            )
        elif params.sequence_decoder_type == "LSTM":
            self._decoder = SequenceDecoderLSTM(params.hidden_dim)
        elif params.sequence_decoder_type == "maskedLSTM":
            self._decoder = SequenceDecoderLSTM(params.hidden_dim)
        else:
            raise RuntimeError(
                f"Got sequence decoder type {params.sequence_decoder_type} but only knows one of: 'MLP', 'LSTM', 'maskedLSTM' "
            )

    def forward(
        self,
        z_samples: torch.Tensor,
        mask_z: torch.Tensor,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        encoded_absolute: torch.Tensor,
        encoded_map: torch.Tensor,
        mask_map: torch.Tensor,
    ) -> torch.Tensor:
        """Forward function that decodes input tensors into an output tensor of size
        (batch_size, num_agents, (n_samples), num_steps_future, state_dim)

        Args:
            z_samples: (batch_size, num_agents, (n_samples), latent_dim) tensor of history
            mask_z: (batch_size, num_agents) tensor of bool mask
            x: (batch_size, num_agents, num_steps, state_dim) tensor of history for all agents
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            encoded_absolute: (batch_size, num_agents,  feature_size) tensor of the encoded absolute agent positions
            encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
            mask_map: (batch_size, num_objects) tensor of bool mask

        Returns:
            (batch_size, num_agents, (n_samples), num_steps_future, state_dim) output tensor
        """

        encoded_x = self._agent_encoder_past(x, mask_x)
        squeeze_output_sample_dim = False
        if z_samples.ndim == 3:
            batch_size, num_agents, latent_dim = z_samples.shape
            num_samples = 1
            z_samples = rearrange(z_samples, "b a l -> b a () l")
            squeeze_output_sample_dim = True
        else:
            batch_size, num_agents, num_samples, latent_dim = z_samples.shape
            mask_z = repeat(mask_z, "b a -> (b s) a", s=num_samples)
            mask_map = repeat(mask_map, "b o -> (b s) o", s=num_samples)
            encoded_x = repeat(encoded_x, "b a l -> (b s) a l", s=num_samples)
            encoded_absolute = repeat(
                encoded_absolute, "b a l -> (b s) a l", s=num_samples
            )
            encoded_map = repeat(encoded_map, "b o l -> (b s) o l", s=num_samples)

        z_samples = rearrange(z_samples, "b a s l -> (b s) a l")

        h = self._combine_z_past(torch.cat([z_samples, encoded_x], dim=-1))

        h = self._interaction(h, mask_z, encoded_absolute, encoded_map, mask_map)

        h = self._decoder(h, self.num_steps_future)

        if not squeeze_output_sample_dim:
            h = rearrange(h, "(b s) a t l -> b a s t l", b=batch_size, s=num_samples)

        return h


class CVAEAccelerationDecoder(nn.Module):
    """Decoder architecture for conditional variational autoencoder

    Args:
        model: decoder neural network that transforms input tensors to an output sequence
    """

    def __init__(
        self,
        model: nn.Module,
    ) -> None:
        super().__init__()
        self._model = model
        self._output_layer = nn.Linear(model.hidden_dim, 2)

    def forward(
        self,
        z_samples: torch.Tensor,
        mask_z: torch.Tensor,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        encoded_absolute: torch.Tensor,
        encoded_map: torch.Tensor,
        mask_map: torch.Tensor,
        offset: torch.Tensor,
    ) -> torch.Tensor:
        """Forward function that decodes input tensors into an output tensor of size
        (batch_size, num_agents, (n_samples), num_steps_future, state_dim=5)
        It first predicts accelerations that are doubly integrated to produce the output
        state sequence with positions angles and velocities (x, y, theta, vx, vy) or (x, y, vx, vy) or (x, y)

        Args:
            z_samples: (batch_size, num_agents, (n_samples), latent_dim) tensor of history
            mask_z: (batch_size, num_agents) tensor of bool mask
            x: (batch_size, num_agents, num_steps, state_dim) tensor of history for all agents
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            encoded_absolute: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
            encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
            mask_map: (batch_size, num_objects) tensor of bool mask

        Returns:
            (batch_size, num_agents, (n_samples), num_steps_future, state_dim) output tensor. Sample dimension
            does not exist if z_samples is a 2D tensor.
        """

        h = self._model(
            z_samples, mask_z, x, mask_x, encoded_absolute, encoded_map, mask_map
        )
        h = self._output_layer(h)

        dt = self._model.dt
        initial_position = x[..., -1:, :2].clone()
        # If shape is 5 it should be (x, y, angle, vx, vy)
        if offset.shape[-1] == 5:
            initial_velocity = offset[..., 3:5].clone().unsqueeze(-2)
        # else if shape is 4 it should be (x, y, vx, vy)
        elif offset.shape[-1] == 4:
            initial_velocity = offset[..., 2:4].clone().unsqueeze(-2)
        elif x.shape[-1] == 5:
            initial_velocity = x[..., -1:, 3:5].clone()
        elif x.shape[-1] == 4:
            initial_velocity = x[..., -1:, 2:4].clone()
        else:
            initial_velocity = (x[..., -1:, :] - x[..., -2:-1, :]) / dt

        output = torch.zeros(
            (*h.shape[:-1], self._model.dynamic_state_dim), device=h.device
        )
        # There might be a sample dimension in the output tensor, then adapt the shape of initial position and velocity
        if output.ndim == 5:
            initial_position = initial_position.unsqueeze(-3)
            initial_velocity = initial_velocity.unsqueeze(-3)

        if self._model.dynamic_state_dim == 5:
            output[..., 3:5] = h.cumsum(-2) * dt
            output[..., :2] = (output[..., 3:5].clone() + initial_velocity).cumsum(
                -2
            ) * dt + initial_position
            output[..., 2] = torch.atan2(output[..., 4].clone(), output[..., 3].clone())
        elif self._model.dynamic_state_dim == 4:
            output[..., 2:4] = h.cumsum(-2) * dt
            output[..., :2] = (output[..., 2:4].clone() + initial_velocity).cumsum(
                -2
            ) * dt + initial_position
        else:
            velocity = h.cumsum(-2) * dt
            output = (velocity.clone() + initial_velocity).cumsum(
                -2
            ) * dt + initial_position
        return output


class CVAEParametrizedDecoder(nn.Module):
    """Decoder architecture for conditional variational autoencoder

    Args:
        model: decoder neural network that transforms input tensors to an output sequence
    """

    def __init__(
        self,
        model: nn.Module,
    ) -> None:
        super().__init__()
        self._model = model
        self._order = 3
        self._output_layer = nn.Linear(
            model.hidden_dim * model.num_steps_future,
            2 * self._order + model.num_steps_future,
        )

    def polynomial(self, x: torch.Tensor, params: torch.Tensor):
        """Polynomial function that takes a tensor of shape (batch_size, num_agents, (n_samples), num_steps_future) and
        a parameter tensor of shape (batch_size, num_agents, (n_samples), self._order*2) and returns a tensor of shape (batch_size, num_agents, (n_samples), num_steps_future)
        """
        h = x.clone()
        squeeze = False
        if h.ndim == 3:
            h = h.unsqueeze(2)
            params = params.unsqueeze(2)
            squeeze = True
        h = repeat(
            h,
            "batch agents samples sequence -> batch agents samples sequence two order",
            order=self._order,
            two=2,
        ).cumprod(-1)
        h = h * params.view(*params.shape[:-1], 1, 2, self._order)
        h = h.sum(-1)
        if squeeze:
            h = h.squeeze(2)
        return h

    def dpolynomial(self, x: torch.Tensor, params: torch.Tensor):
        """Derivative of the polynomial function that takes a tensor of shape (batch_size, num_agents, (n_samples), num_steps_future) and
        a parameter tensor of shape (batch_size, num_agents, (n_samples), self._order*2) and returns a tensor of shape (batch_size, num_agents, (n_samples), num_steps_future)
        """
        h = x.clone()
        squeeze = False
        if h.ndim == 3:
            h = h.unsqueeze(2)
            params = params.unsqueeze(2)
            squeeze = True
        h = repeat(
            h,
            "batch agents samples sequence -> batch agents samples sequence two order",
            order=self._order - 1,
            two=2,
        )
        h = torch.cat((torch.ones_like(h[..., :1]), h.cumprod(-1)), -1)
        h = h * params.view(*params.shape[:-1], 1, 2, self._order)
        h = h * torch.arange(self._order).view(*([1] * params.ndim), -1).to(x.device)
        h = h.sum(-1)
        if squeeze:
            h = h.squeeze(2)
        return h

    def forward(
        self,
        z_samples: torch.Tensor,
        mask_z: torch.Tensor,
        x: torch.Tensor,
        mask_x: torch.Tensor,
        encoded_absolute: torch.Tensor,
        encoded_map: torch.Tensor,
        mask_map: torch.Tensor,
        offset: torch.Tensor,
    ) -> torch.Tensor:
        """Forward function that decodes input tensors into an output tensor of size
        (batch_size, num_agents, (n_samples), num_steps_future, state_dim=5)
        It first predicts accelerations that are doubly integrated to produce the output
        state sequence with positions angles and velocities (x, y, theta, vx, vy) or (x, y, vx, vy) or (x, y)

        Args:
            z_samples: (batch_size, num_agents, (n_samples), latent_dim) tensor of history
            mask_z: (batch_size, num_agents) tensor of bool mask
            x: (batch_size, num_agents, num_steps, state_dim) tensor of history for all agents
            mask_x: (batch_size, num_agents, num_steps) tensor of bool mask
            encoded_absolute: (batch_size, num_agents, feature_size) tensor of the encoded absolute agent positions
            encoded_map: (batch_size, num_objects, map_feature_dim) tensor of encoded map objects
            mask_map: (batch_size, num_objects) tensor of bool mask

        Returns:
            (batch_size, num_agents, (n_samples), num_steps_future, state_dim) output tensor. Sample dimension
            does not exist if z_samples is a 2D tensor.
        """

        squeeze_output_sample_dim = z_samples.ndim == 3
        batch_size = z_samples.shape[0]

        h = self._model(
            z_samples, mask_z, x, mask_x, encoded_absolute, encoded_map, mask_map
        )
        if squeeze_output_sample_dim:
            h = rearrange(
                h, "batch agents sequence features -> batch agents (sequence features)"
            )
        else:
            h = rearrange(
                h,
                "(batch samples) agents sequence features -> batch agents samples (sequence features)",
                batch=batch_size,
            )
        h = self._output_layer(h)

        output = torch.zeros(
            (
                *h.shape[:-1],
                self._model.num_steps_future,
                self._model.dynamic_state_dim,
            ),
            device=h.device,
        )
        params = h[..., : 2 * self._order]
        dldt = torch.relu(h[..., 2 * self._order :])
        distance = dldt.cumsum(-2)
        output[..., :2] = self.polynomial(distance, params)
        if self._model.dynamic_state_dim == 5:
            output[..., 3:5] = dldt * self.dpolynomial(distance, params)
            output[..., 2] = torch.atan2(output[..., 4].clone(), output[..., 3].clone())
        elif self._model.dynamic_state_dim == 4:
            output[..., 2:4] = dldt * self.dpolynomial(distance, params)

        return output