File size: 21,819 Bytes
5769ee4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import inspect
import math
import warnings
from abc import ABC, abstractmethod

import torch
from torch import Tensor


class AbstractMonteCarloRiskEstimator(ABC):
    """Abstract class for Monte Carlo estimation of risk objectives"""

    @abstractmethod
    def __call__(self, risk_level: Tensor, cost: Tensor) -> Tensor:
        """Computes and returns the risk objective estimated on the cost tensor

        Args:
            risk_level: (batch_size,) tensor of risk-level at which the risk objective is computed
            cost: (batch_size, n_samples) tensor of cost samples
        Returns:
            risk tensor of size (batch_size,)
        """


class EntropicRiskEstimator(AbstractMonteCarloRiskEstimator):
    """Monte Carlo estimator for the entropic risk objective.
    This estimator computes the entropic risk as 1/risk_level * log( mean( exp(risk_level * cost), 1))
    However, this is unstable.
    When risk_level is large, the logsumexp trick is used.
    When risk_level is small, it computes entropic_risk for small values of risk_level as the second order Taylor expansion instead.

    Args:
        eps: Risk-level threshold to switch between logsumexp and Taylor expansion. Defaults to 1e-4.
    """

    def __init__(self, eps: float = 1e-4) -> None:
        self.eps = eps

    def __call__(self, risk_level: Tensor, cost: Tensor, weights: Tensor) -> Tensor:
        """Computes and returns the entropic risk estimated on the cost tensor

        Args:
            risk_level: (batch_size, n_agents,) tensor of risk-level at which the risk objective is computed
            cost: (batch_size, n_agents, n_samples) cost tensor
            weights: (batch_size, n_agents, n_samples) tensor of weights for the cost samples
        Returns:
            entropic risk tensor of size (batch_size,)
        """
        weights = weights / weights.sum(dim=-1, keepdim=True)
        batch_size, n_agents, n_samples = cost.shape
        entropic_risk_cost_large_sigma = (
            ((risk_level.view(batch_size, n_agents, 1) * cost).exp() * weights)
            .sum(-1)
            .log()
        ) / risk_level

        mean = (cost * weights).sum(dim=-1)
        var = (cost**2 * weights).sum(dim=-1) - mean**2

        var, mean = torch.var_mean(cost, -1)
        entropic_risk_cost_small_sigma = mean + 0.5 * risk_level * var

        return torch.where(
            torch.abs(risk_level) > self.eps,
            entropic_risk_cost_large_sigma,
            entropic_risk_cost_small_sigma,
        )


class CVaREstimator(AbstractMonteCarloRiskEstimator):
    """Monte Carlo estimator for the conditional value-at-risk objective.
    This estimator is proposed in the following references, and shown to be consistent.
    - Hong et al. (2014), "Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review"
    - Traindade et al. (2007), "Financial prediction with constrained tail risk"
    When risk_level is larger than 1 - eps, it falls back to the max operator

    Args:
        Args:
        eps: Risk-level threshold to switch between CVaR and Max. Defaults to 1e-4.
    """

    def __init__(self, eps: float = 1e-4) -> None:
        self.eps = eps

    def __call__(self, risk_level: Tensor, cost: Tensor, weights: Tensor) -> Tensor:
        """Computes and returns the conditional value-at-risk estimated on the cost tensor

        Args:
            risk_level: (batch_size, n_agents) tensor of risk-level in [0, 1] at which the CVaR risk is computed
            cost: (batch_size, n_agents, n_samples) cost tensor
            weights: (batch_size, n_agents, n_samples) tensor of weights for the cost samples

        Returns:
            conditional value-at-risk tensor of size (batch_size, n_agents)
        """
        assert risk_level.shape[0] == cost.shape[0]
        assert risk_level.shape[1] == cost.shape[1]
        if weights is None:
            weights = torch.ones_like(cost) / cost.shape[-1]
        else:
            weights = weights / weights.sum(dim=-1, keepdim=True)
        if not (torch.all(0.0 <= risk_level) and torch.all(risk_level <= 1.0)):
            warnings.warn(
                "risk_level is defined only between 0.0 and 1.0 for CVaR. Exceeded values will be clamped."
            )
            risk_level = torch.clamp(risk_level, min=0.0, max=1.0)

        cvar_risk_high = cost.max(dim=-1).values

        sorted_indices = torch.argsort(cost, dim=-1)
        # cost_sorted = cost.sort(dim=-1, descending=False).values
        cost_sorted = torch.gather(cost, -1, sorted_indices)
        weights_sorted = torch.gather(weights, -1, sorted_indices)
        idx_to_choose = torch.argmax(
            (weights_sorted.cumsum(dim=-1) >= risk_level.unsqueeze(-1)).float(), -1
        )

        value_at_risk_mc = cost_sorted.gather(-1, idx_to_choose.unsqueeze(-1)).squeeze(
            -1
        )

        # weights_at_risk_mc = 1 - weights_sorted.cumsum(-1).gather(
        #     -1, idx_to_choose.unsqueeze(-1)
        # ).squeeze(-1)
        # cvar_risk_mc = value_at_risk_mc + (
        #     (torch.relu(cost - value_at_risk_mc.unsqueeze(-1)) * weights).sum(dim=-1)
        #     / weights_at_risk_mc
        # )
        # cvar = torch.where(weights_at_risk_mc < self.eps, cvar_risk_high, cvar_risk_mc)

        cvar_risk_mc = value_at_risk_mc + 1 / (1 - risk_level) * (
            (torch.relu(cost - value_at_risk_mc.unsqueeze(-1)) * weights).sum(dim=-1)
        )
        cvar = torch.where(risk_level > 1 - self.eps, cvar_risk_high, cvar_risk_mc)
        return cvar


def get_risk_estimator(estimator_params: dict) -> AbstractMonteCarloRiskEstimator:
    """Function that returns the Monte Carlo risk estimator hat matches the given parameters.
    Tries to give a comprehensive feedback if the parameters are not recognized and raise an error.

    Args:
        Risk estimator should be one of the following types (with different parameter values as desired) :
            {"type": "entropic", "eps": 1e-4},
            {"type": "cvar", "eps": 1e-4}

    Raises:
        RuntimeError: If the given parameter dictionary does not match one of the expected formats, raise a comprehensive error.

    Returns:
        A risk estimator matching the given parameters.
    """
    known_types = ["entropic", "cvar"]
    try:
        if estimator_params["type"].lower() == "entropic":
            expected_params = inspect.getfullargspec(EntropicRiskEstimator)[0][1:]
            return EntropicRiskEstimator(estimator_params["eps"])
        elif estimator_params["type"].lower() == "cvar":
            expected_params = inspect.getfullargspec(CVaREstimator)[0][1:]
            return CVaREstimator(estimator_params["eps"])
        else:
            raise RuntimeError(
                f"Risk estimator '{estimator_params['type']}' is unknown. It should be one of {known_types}."
            )
    except KeyError:
        if "type" in estimator_params:
            raise RuntimeError(
                f"""The estimator '{estimator_params['type']}' is known but the given parameters
                {estimator_params} do not match the expected parameters {expected_params}."""
            )
        else:
            raise RuntimeError(
                f"""The given estimator parameters {estimator_params} do not define the estimator
                type in the field 'type'. Please add a field 'type' and set it to one of the
                handeled types: {known_types}."""
            )


class AbstractRiskLevelSampler(ABC):
    """Abstract class for a risk-level sampler for training and evaluating risk-biased predictors"""

    @abstractmethod
    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        """Returns a tensor of size batch_size with sampled risk-level values

        Args:
            batch_size: number of elements in the out tensor
            device: device of the output tensor

        Returns:
            A tensor of shape(batch_size,) filled with sampled risk values
        """

    @abstractmethod
    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        """Returns a tensor of size batch_size with high values of risk.

        Args:
            batch_size: number of elements in the out tensor
            device: device of the output tensor

        Returns:
            A tensor of shape (batchc_size,) filled with the highest possible risk-level
        """


class UniformRiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a uniform distribution

    Args:
        min: minimum risk-level
        max: maximum risk-level
    """

    def __init__(self, min: int, max: int) -> None:
        self.min = min
        self.max = max

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.rand(batch_size, device=device) * (self.max - self.min) + self.min

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.ones(batch_size, device=device) * self.max


class NormalRiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a normal distribution

    Args:
        mean: average risk-level
        sigma: standard deviation of the sampler
    """

    def __init__(self, mean: int, sigma: int) -> None:
        self.mean = mean
        self.sigma = sigma

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.randn(batch_size, device=device) * self.sigma + self.mean

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.ones(batch_size, device=device) * self.sigma * 3


class BernoulliRiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a scaled Bernoulli distribution

    Args:
        min: minimum risk-level
        max: maximum risk-level
        p: Bernoulli parameter
    """

    def __init__(self, min: int, max: int, p: int) -> None:
        self.min = min
        self.max = max
        self.p = p

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        return (
            torch.bernoulli(torch.ones(batch_size, device=device) * self.p)
            * (self.max - self.min)
            + self.min
        )

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.ones(batch_size, device=device) * self.max


class BetaRiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a scaled Beta distribution

        Distribution properties:
            mean = alpha*(max-min)/(alpha + beta) + min
            mode = (alpha-1)*(max-min)/(alpha + beta - 2) + min
            variance = alpha*beta*(max-min)**2/((alpha+beta)**2*(alpha+beta+1))

    Args:
        min: minimum risk-level
        max: maximum risk-level
        alpha: First distribution parameter
        beta: Second distribution parameter
    """

    def __init__(self, min: int, max: int, alpha: float, beta: float) -> None:
        self.min = min
        self.max = max
        self._distribution = torch.distributions.Beta(
            torch.tensor([alpha], dtype=torch.float32),
            torch.tensor([beta], dtype=torch.float32),
        )

    @property
    def alpha(self):
        return self._distribution.concentration1.item()

    @alpha.setter
    def alpha(self, alpha: float):
        self._distribution = torch.distributions.Beta(
            torch.tensor([alpha], dtype=torch.float32),
            torch.tensor([self.beta], dtype=torch.float32),
        )

    @property
    def beta(self):
        return self._distribution.concentration0.item()

    @beta.setter
    def beta(self, beta: float):
        self._distribution = torch.distributions.Beta(
            torch.tensor([self.alpha], dtype=torch.float32),
            torch.tensor([beta], dtype=torch.float32),
        )

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        return (
            self._distribution.sample((batch_size,)).to(device) * (self.max - self.min)
            + self.min
        ).view(batch_size)

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.ones(batch_size, device=device) * self.max


class Chi2RiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a scaled chi2 distribution

        Distribution properties:
            mean = k*scale + min
            mode = max(k-2, 0)*scale + min
            variance = 2*k*scale**2

    Args:
        min: minimum risk-level
        scale: scaling factor for the risk-level
        k: Chi2 parameter: degrees of freedom of the distribution
    """

    def __init__(self, min: int, scale: float, k: int) -> None:
        self.min = min
        self.scale = scale
        self._distribution = torch.distributions.Chi2(
            torch.tensor([k], dtype=torch.float32)
        )

    @property
    def k(self):
        return self._distribution.df.item()

    @k.setter
    def k(self, k: int):
        self._distribution = torch.distributions.Chi2(
            torch.tensor([k], dtype=torch.float32)
        )

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        return (
            self._distribution.sample((batch_size,)).to(device) * self.scale + self.min
        ).view(batch_size)

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        std = self.scale * math.sqrt(2 * self.k)
        return torch.ones(batch_size, device=device) * std * 3


class LogNormalRiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a scaled Beta distribution

        Distribution properties:
            mean = exp(mu + sigma**2/2)*scale + min
            mode = exp(mu - sigma**2)*scale + min
            variance = (exp(sigma**2)-1)*exp(2*mu+sigma**2)*scale**2

    Args:
        min: minimum risk-level
        scale: scaling factor for the risk-level
        mu: First distribution parameter
        sigma: maximum risk-level
    """

    def __init__(self, min: int, scale: float, mu: float, sigma: float) -> None:
        self.min = min
        self.scale = scale
        self._distribution = torch.distributions.LogNormal(
            torch.tensor([mu], dtype=torch.float32),
            torch.tensor([sigma], dtype=torch.float32),
        )

    @property
    def mu(self):
        return self._distribution.loc.item()

    @mu.setter
    def mu(self, mu: float):
        self._distribution = torch.distributions.LogNormal(
            torch.tensor([mu], dtype=torch.float32),
            torch.tensor([self.sigma], dtype=torch.float32),
        )

    @property
    def sigma(self) -> float:
        return self._distribution.scale.item()

    @sigma.setter
    def sigma(self, sigma: float):
        self._distribution = torch.distributions.LogNormal(
            torch.tensor([self.mu], dtype=torch.float32),
            torch.tensor([sigma], dtype=torch.float32),
        )

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        return (
            self._distribution.sample((batch_size,)).to(device) * self.scale + self.min
        ).view(batch_size)

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        std = (
            (torch.exp(self.sigma.square()) - 1).sqrt()
            * torch.exp(self.mu + self.sigma.square() / 2)
            * self.scale
        )
        return torch.ones(batch_size, device=device) * 3 * std


class LogUniformRiskLevelSampler(AbstractRiskLevelSampler):
    """Risk-level sampler with a reversed log-uniform distribution (increasing density function). Between min and max.

        Distribution properties:
            mean = (max - min)/ln((max+1)/(min+1)) - 1/scale
            mode = None
            variance = (((max+1)^2 - (min+1)^2)/(2*ln((max+1)/(min+1))) - ((max - min)/ln((max+1)/(min+1)))^2)

    Args:
        min: minimum risk-level
        max: maximum risk-level
        scale: scale to apply to the sampling before applying exponential,
        the output is rescaled back to fit in bounds [min, max] (the higher the scale the less uniform the distribution)
    """

    def __init__(self, min: float, max: float, scale: float) -> None:
        assert min >= 0
        assert max > min
        assert scale > 0
        self.min = min
        self.max = max
        self.scale = scale

    def sample(self, batch_size: int, device: torch.device) -> Tensor:
        scale = self.scale / (self.max - self.min)
        max = self.max * scale
        min = self.min * scale
        return (
            max
            - (
                (
                    torch.rand(batch_size, device=device)
                    * (math.log(max + 1) - math.log(min + 1))
                    + math.log(min + 1)
                ).exp()
                - 1
            )
            + min
        ) / scale

    def get_highest_risk(self, batch_size: int, device: torch.device) -> Tensor:
        return torch.ones(batch_size, device=device) * self.max


def get_risk_level_sampler(distribution_params: dict) -> AbstractRiskLevelSampler:
    """Function that returns the risk level sampler that matches the given parameters.
    Tries to give a comprehensive feedback if the parameters are not recognized and raise an error.

    Args:
        Risk distribution should be one of the following types (with different parameter values as desired) :
            {"type": "uniform", "min": 0, "max": 1},
            {"type": "normal", "mean": 0, "sigma": 1},
            {"type": "bernoulli", "p": 0.5, "min": 0, "max": 1},
            {"type": "beta", "alpha": 2, "beta": 5, "min": 0, "max": 1},
            {"type": "chi2", "k": 3, "min": 0, "scale": 1},
            {"type": "log-normal", "mu": 0, "sigma": 1, "min": 0, "scale": 1}
            {"type": "log-uniform", "min": 0, "max": 1, "scale": 1}

    Raises:
        RuntimeError: If the given parameter dictionary does not match one of the expected formats, raise a comprehensive error.

    Returns:
        A risk level sampler matching the given parameters.
    """
    known_types = [
        "uniform",
        "normal",
        "bernoulli",
        "beta",
        "chi2",
        "log-normal",
        "log-uniform",
    ]
    try:
        if distribution_params["type"].lower() == "uniform":
            expected_params = inspect.getfullargspec(UniformRiskLevelSampler)[0][1:]
            return UniformRiskLevelSampler(
                distribution_params["min"], distribution_params["max"]
            )
        elif distribution_params["type"].lower() == "normal":
            expected_params = inspect.getfullargspec(NormalRiskLevelSampler)[0][1:]
            return NormalRiskLevelSampler(
                distribution_params["mean"], distribution_params["sigma"]
            )
        elif distribution_params["type"].lower() == "bernoulli":
            expected_params = inspect.getfullargspec(BernoulliRiskLevelSampler)[0][1:]
            return BernoulliRiskLevelSampler(
                distribution_params["min"],
                distribution_params["max"],
                distribution_params["p"],
            )
        elif distribution_params["type"].lower() == "beta":
            expected_params = inspect.getfullargspec(BetaRiskLevelSampler)[0][1:]
            return BetaRiskLevelSampler(
                distribution_params["min"],
                distribution_params["max"],
                distribution_params["alpha"],
                distribution_params["beta"],
            )
        elif distribution_params["type"].lower() == "chi2":
            expected_params = inspect.getfullargspec(Chi2RiskLevelSampler)[0][1:]
            return Chi2RiskLevelSampler(
                distribution_params["min"],
                distribution_params["scale"],
                distribution_params["k"],
            )
        elif distribution_params["type"].lower() == "log-normal":
            expected_params = inspect.getfullargspec(LogNormalRiskLevelSampler)[0][1:]
            return LogNormalRiskLevelSampler(
                distribution_params["min"],
                distribution_params["scale"],
                distribution_params["mu"],
                distribution_params["sigma"],
            )
        elif distribution_params["type"].lower() == "log-uniform":
            expected_params = inspect.getfullargspec(LogUniformRiskLevelSampler)[0][1:]
            return LogUniformRiskLevelSampler(
                distribution_params["min"],
                distribution_params["max"],
                distribution_params["scale"],
            )
        else:
            raise RuntimeError(
                f"Distribution {distribution_params['type']} is unknown. It should be one of {known_types}."
            )
    except KeyError:
        if "type" in distribution_params:
            raise RuntimeError(
                f"The distribution '{distribution_params['type']}' is known but the given parameters {distribution_params} do not match the expected parameters {expected_params}."
            )
        else:
            raise RuntimeError(
                f"The given distribution parameters {distribution_params} do not define the distribution type in the field 'type'. Please add a field 'type' and set it to one of the handeled types: {known_types}."
            )


if __name__ == "__main__":
    import matplotlib.pyplot as plt

    sampler = get_risk_level_sampler(
        {"type": "log-uniform", "min": 0, "max": 1, "scale": 10}
    )
    # sampler = get_risk_level_sampler({"type": "normal", "mean": 0, "sigma": 1})
    a = sampler.sample(10000, "cpu").detach().numpy()
    _ = plt.hist(a, bins="auto")  # arguments are passed to np.histogram
    plt.title("Histogram with 'auto' bins")
    plt.show()