Spaces:
Sleeping
Sleeping
update numpy.bool8 to numpy.bool_
Browse files
export_waymo_to_json.py
CHANGED
@@ -70,12 +70,12 @@ if __name__ == "__main__":
|
|
70 |
decoded = json.load(f)
|
71 |
|
72 |
x_c = torch.from_numpy(numpy.array(decoded["x"]).astype(numpy.float32))
|
73 |
-
mask_x_c = torch.from_numpy(numpy.array(decoded["mask_x"]).astype(numpy.
|
74 |
y_c = torch.from_numpy(numpy.array(decoded["y"]).astype(numpy.float32))
|
75 |
-
mask_y_c = torch.from_numpy(numpy.array(decoded["mask_y"]).astype(numpy.
|
76 |
-
mask_loss_c = torch.from_numpy( numpy.array(decoded["mask_loss"]).astype(numpy.
|
77 |
map_data_c = torch.from_numpy(numpy.array(decoded["map_data"]).astype(numpy.float32))
|
78 |
-
mask_map_c = torch.from_numpy(numpy.array(decoded["mask_map"]).astype(numpy.
|
79 |
offset_c = torch.from_numpy(numpy.array(decoded["offset"]).astype(numpy.float32))
|
80 |
x_ego_c = torch.from_numpy(numpy.array(decoded["x_ego"]).astype(numpy.float32))
|
81 |
y_ego_c = torch.from_numpy(numpy.array(decoded["y_ego"]).astype(numpy.float32))
|
|
|
70 |
decoded = json.load(f)
|
71 |
|
72 |
x_c = torch.from_numpy(numpy.array(decoded["x"]).astype(numpy.float32))
|
73 |
+
mask_x_c = torch.from_numpy(numpy.array(decoded["mask_x"]).astype(numpy.bool_))
|
74 |
y_c = torch.from_numpy(numpy.array(decoded["y"]).astype(numpy.float32))
|
75 |
+
mask_y_c = torch.from_numpy(numpy.array(decoded["mask_y"]).astype(numpy.bool_))
|
76 |
+
mask_loss_c = torch.from_numpy( numpy.array(decoded["mask_loss"]).astype(numpy.bool_))
|
77 |
map_data_c = torch.from_numpy(numpy.array(decoded["map_data"]).astype(numpy.float32))
|
78 |
+
mask_map_c = torch.from_numpy(numpy.array(decoded["mask_map"]).astype(numpy.bool_))
|
79 |
offset_c = torch.from_numpy(numpy.array(decoded["offset"]).astype(numpy.float32))
|
80 |
x_ego_c = torch.from_numpy(numpy.array(decoded["x_ego"]).astype(numpy.float32))
|
81 |
y_ego_c = torch.from_numpy(numpy.array(decoded["y_ego"]).astype(numpy.float32))
|
import_dataset_from_huggingface.py
CHANGED
@@ -30,12 +30,12 @@ sample_dataloader = dataloaders.sample_dataloader()
|
|
30 |
dataset = load_dataset("jmercat/risk_biased_dataset", split="test")
|
31 |
|
32 |
x_c = torch.from_numpy(numpy.array(dataset["x"]).astype(numpy.float32))
|
33 |
-
mask_x_c = torch.from_numpy(numpy.array(dataset["mask_x"]).astype(numpy.
|
34 |
y_c = torch.from_numpy(numpy.array(dataset["y"]).astype(numpy.float32))
|
35 |
-
mask_y_c = torch.from_numpy(numpy.array(dataset["mask_y"]).astype(numpy.
|
36 |
-
mask_loss_c = torch.from_numpy( numpy.array(dataset["mask_loss"]).astype(numpy.
|
37 |
map_data_c = torch.from_numpy(numpy.array(dataset["map_data"]).astype(numpy.float32))
|
38 |
-
mask_map_c = torch.from_numpy(numpy.array(dataset["mask_map"]).astype(numpy.
|
39 |
offset_c = torch.from_numpy(numpy.array(dataset["offset"]).astype(numpy.float32))
|
40 |
x_ego_c = torch.from_numpy(numpy.array(dataset["x_ego"]).astype(numpy.float32))
|
41 |
y_ego_c = torch.from_numpy(numpy.array(dataset["y_ego"]).astype(numpy.float32))
|
|
|
30 |
dataset = load_dataset("jmercat/risk_biased_dataset", split="test")
|
31 |
|
32 |
x_c = torch.from_numpy(numpy.array(dataset["x"]).astype(numpy.float32))
|
33 |
+
mask_x_c = torch.from_numpy(numpy.array(dataset["mask_x"]).astype(numpy.bool_))
|
34 |
y_c = torch.from_numpy(numpy.array(dataset["y"]).astype(numpy.float32))
|
35 |
+
mask_y_c = torch.from_numpy(numpy.array(dataset["mask_y"]).astype(numpy.bool_))
|
36 |
+
mask_loss_c = torch.from_numpy( numpy.array(dataset["mask_loss"]).astype(numpy.bool_))
|
37 |
map_data_c = torch.from_numpy(numpy.array(dataset["map_data"]).astype(numpy.float32))
|
38 |
+
mask_map_c = torch.from_numpy(numpy.array(dataset["mask_map"]).astype(numpy.bool_))
|
39 |
offset_c = torch.from_numpy(numpy.array(dataset["offset"]).astype(numpy.float32))
|
40 |
x_ego_c = torch.from_numpy(numpy.array(dataset["x_ego"]).astype(numpy.float32))
|
41 |
y_ego_c = torch.from_numpy(numpy.array(dataset["y_ego"]).astype(numpy.float32))
|
scripts/scripts_utils/plotly_interface.py
CHANGED
@@ -56,12 +56,12 @@ def configuration_paths() -> Iterable[os.PathLike]:
|
|
56 |
|
57 |
def load_item(index: int, dataset: Dataset, device: str = "cpu") -> Tuple:
|
58 |
x = torch.from_numpy(numpy.array(dataset[index]["x"]).astype(numpy.float32)).to(device)
|
59 |
-
mask_x = torch.from_numpy(numpy.array(dataset[index]["mask_x"]).astype(numpy.
|
60 |
y = torch.from_numpy(numpy.array(dataset[index]["y"]).astype(numpy.float32)).to(device)
|
61 |
-
mask_y = torch.from_numpy(numpy.array(dataset[index]["mask_y"]).astype(numpy.
|
62 |
-
mask_loss = torch.from_numpy( numpy.array(dataset[index]["mask_loss"]).astype(numpy.
|
63 |
map_data = torch.from_numpy(numpy.array(dataset[index]["map_data"]).astype(numpy.float32)).to(device)
|
64 |
-
mask_map = torch.from_numpy(numpy.array(dataset[index]["mask_map"]).astype(numpy.
|
65 |
offset = torch.from_numpy(numpy.array(dataset[index]["offset"]).astype(numpy.float32)).to(device)
|
66 |
x_ego = torch.from_numpy(numpy.array(dataset[index]["x_ego"]).astype(numpy.float32)).to(device)
|
67 |
y_ego = torch.from_numpy(numpy.array(dataset[index]["y_ego"]).astype(numpy.float32)).to(device)
|
|
|
56 |
|
57 |
def load_item(index: int, dataset: Dataset, device: str = "cpu") -> Tuple:
|
58 |
x = torch.from_numpy(numpy.array(dataset[index]["x"]).astype(numpy.float32)).to(device)
|
59 |
+
mask_x = torch.from_numpy(numpy.array(dataset[index]["mask_x"]).astype(numpy.bool_)).to(device)
|
60 |
y = torch.from_numpy(numpy.array(dataset[index]["y"]).astype(numpy.float32)).to(device)
|
61 |
+
mask_y = torch.from_numpy(numpy.array(dataset[index]["mask_y"]).astype(numpy.bool_)).to(device)
|
62 |
+
mask_loss = torch.from_numpy( numpy.array(dataset[index]["mask_loss"]).astype(numpy.bool_)).to(device)
|
63 |
map_data = torch.from_numpy(numpy.array(dataset[index]["map_data"]).astype(numpy.float32)).to(device)
|
64 |
+
mask_map = torch.from_numpy(numpy.array(dataset[index]["mask_map"]).astype(numpy.bool_)).to(device)
|
65 |
offset = torch.from_numpy(numpy.array(dataset[index]["offset"]).astype(numpy.float32)).to(device)
|
66 |
x_ego = torch.from_numpy(numpy.array(dataset[index]["x_ego"]).astype(numpy.float32)).to(device)
|
67 |
y_ego = torch.from_numpy(numpy.array(dataset[index]["y_ego"]).astype(numpy.float32)).to(device)
|