from datasets import load_dataset import datasets import json from mmcv import Config import numpy import torch from risk_biased.utils.waymo_dataloader import WaymoDataloaders config_path = "risk_biased/config/waymo_config.py" cfg = Config.fromfile(config_path) dataloaders = WaymoDataloaders(cfg) sample_dataloader = dataloaders.sample_dataloader() ( x, mask_x, y, mask_y, mask_loss, map_data, mask_map, offset, x_ego, y_ego, ) = sample_dataloader.collate_fn(sample_dataloader.dataset) # dataset = load_dataset("json", data_files="../risk_biased_dataset/data.json", split="test", field="x") # dataset = load_from_disk("../risk_biased_dataset/data.json") dataset = load_dataset("jmercat/risk_biased_dataset", split="test") x_c = torch.from_numpy(numpy.array(dataset["x"]).astype(numpy.float32)) mask_x_c = torch.from_numpy(numpy.array(dataset["mask_x"]).astype(numpy.bool_)) y_c = torch.from_numpy(numpy.array(dataset["y"]).astype(numpy.float32)) mask_y_c = torch.from_numpy(numpy.array(dataset["mask_y"]).astype(numpy.bool_)) mask_loss_c = torch.from_numpy( numpy.array(dataset["mask_loss"]).astype(numpy.bool_)) map_data_c = torch.from_numpy(numpy.array(dataset["map_data"]).astype(numpy.float32)) mask_map_c = torch.from_numpy(numpy.array(dataset["mask_map"]).astype(numpy.bool_)) offset_c = torch.from_numpy(numpy.array(dataset["offset"]).astype(numpy.float32)) x_ego_c = torch.from_numpy(numpy.array(dataset["x_ego"]).astype(numpy.float32)) y_ego_c = torch.from_numpy(numpy.array(dataset["y_ego"]).astype(numpy.float32)) assert torch.allclose(x, x_c) assert torch.allclose(mask_x, mask_x_c) assert torch.allclose(y, y_c) assert torch.allclose(mask_y, mask_y_c) assert torch.allclose(mask_loss, mask_loss_c) assert torch.allclose(map_data, map_data_c) assert torch.allclose(mask_map, mask_map_c) assert torch.allclose(offset, offset_c) assert torch.allclose(x_ego, x_ego_c) assert torch.allclose(y_ego, y_ego_c) print("All good!")