import sys
import os
from datetime import datetime
import json
import uuid
from pathlib import Path
from huggingface_hub import CommitScheduler, login
from datasets import load_dataset
import gradio as gr
import markdown
from together import Together
ROOT_FILE = os.path.join(os.path.dirname(os.path.abspath(__file__)), "./")
sys.path.append(ROOT_FILE)
from components.induce_personality import construct_big_five_words
from components.chat_conversation import (
# format_message_history,
format_user_message,
format_context,
gradio_to_huggingface_message,
huggingface_to_gradio_message,
# get_system_instruction,
prepare_tokenizer,
# format_rag_context,
conversation_window,
generate_response_local_api,
generate_response_together_api,
generate_response_debugging,
)
from components.constant import (
CONV_WINDOW,
API_URL,
)
from components.induce_personality import (
build_personality_prompt,
)
LOG_DIR = os.path.join(ROOT_FILE, "log/api/")
if os.path.exists(LOG_DIR) is False:
os.makedirs(LOG_DIR)
# Load Static Files
STATIC_FILE = os.path.join(ROOT_FILE, "_static")
LOG_DIR = os.path.join(ROOT_FILE, "log/test_session/")
INSTRUCTION_PAGE_FILE = os.path.join(STATIC_FILE, "html/instruction_page.html")
USER_NARRATIVE_FILE = os.path.join(STATIC_FILE, "html/user_narrative.html")
PREFERENCE_ELICITATION_TASK_FILE = os.path.join(STATIC_FILE, "html/system_instruction_preference_elicitation.html")
EVALUATION_INSTRUCTION_FILE = os.path.join(STATIC_FILE, "html/evaluation_instruction.html")
GENERAL_INSTRUCTION_FILE = os.path.join(STATIC_FILE, "html/general_instruction.html")
FINAL_EVALUATION_FILE = os.path.join(STATIC_FILE, "html/final_evaluation.html")
SYSTEM_INSTRUCTION_PERSONALIZATION_FILE = os.path.join(STATIC_FILE, "txt/system_instruction_personalization.txt")
SYSTEM_INSTRUCTION_NON_PERSONALIZATION_FILE = os.path.join(
STATIC_FILE, "txt/system_instruction_non_personalization.txt"
)
SYSTEM_INSTRUCTION_PERSONALITY_FILE = os.path.join(STATIC_FILE, "txt/system_instruction_personality.txt")
SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_FILE = os.path.join(
STATIC_FILE, "txt/system_instruction_preference_elicitation.txt"
)
SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_PERSONALITY_FILE = os.path.join(
STATIC_FILE, "txt/system_instruction_preference_elicitation_personality.txt"
)
SUMMARIZATION_PROMPT_FILE = os.path.join(STATIC_FILE, "txt/system_summarization_user_preference_elicitation.txt")
PERSONALITY_EXT_FILE = os.path.join(STATIC_FILE, "txt/personality_ext.txt")
PERSONALITY_INT_FILE = os.path.join(STATIC_FILE, "txt/personality_int.txt")
uuid_this_session = str(uuid.uuid4())
system_order = "first"
feedback_file_interaction = Path("user_feedback/") / f"interaction_{uuid_this_session}_{system_order}.json"
feedback_file_summarization = Path("user_feedback/") / f"summarization_{uuid_this_session}_{system_order}.json"
feedback_file_round_evaluation = Path("user_feedback/") / f"round_evaluation_{uuid_this_session}_{system_order}.json"
feedback_file_final_ranking = Path("user_feedback/") / f"final_ranking_{uuid_this_session}_{system_order}.json"
feedback_file_final_survey = Path("user_feedback/") / f"final_survey_{uuid_this_session}_{system_order}.json"
feedback_folder = feedback_file_interaction.parent
feedback_folder.mkdir(parents=True, exist_ok=True) # Ensure the directory exists
scheduler = CommitScheduler(
repo_id=os.getenv("LOGGING_FILE"),
repo_type="dataset",
folder_path=feedback_folder,
path_in_repo="data",
token=os.getenv("HUGGINGFACE_HUB_TOKEN"),
every=10,
)
# Function to save user feedback
def save_feedback(user_id: str, uuid: str, type: str, value, feedback_file) -> None:
"""
Append input/outputs and user feedback to a JSON Lines file using a thread lock to avoid concurrent writes from different users.
"""
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
with scheduler.lock:
with feedback_file.open("a") as f:
f.write(
json.dumps({"user_id": user_id, "uuid": uuid, "timestamp": timestamp, "type": type, "value": value})
)
f.write("\n")
# Load the required static content from files
def load_static_content(file_path):
with open(file_path, "r") as f:
return f.read()
def ensure_directory_exists(directory_path):
"""Ensures the given directory exists; creates it if it does not."""
if not os.path.exists(directory_path):
os.makedirs(directory_path)
INSTRUCTION_PAGE = load_static_content(INSTRUCTION_PAGE_FILE)
EVALUATION_INSTRUCTION = load_static_content(EVALUATION_INSTRUCTION_FILE)
GENERAL_INSTRUCTION = load_static_content(GENERAL_INSTRUCTION_FILE)
USER_NARRATIVE = load_static_content(USER_NARRATIVE_FILE)
PREFERENCE_ELICITATION_TASK = load_static_content(PREFERENCE_ELICITATION_TASK_FILE)
FINAL_EVALUATION = load_static_content(FINAL_EVALUATION_FILE)
SYSTEM_INSTRUCTION_PERSONALIZATION = load_static_content(SYSTEM_INSTRUCTION_PERSONALIZATION_FILE)
SYSTEM_INSTRUCTION_NON_PERSONALIZATION = load_static_content(SYSTEM_INSTRUCTION_NON_PERSONALIZATION_FILE)
SYSTEM_INSTRUCTION_PERSONALITY = load_static_content(SYSTEM_INSTRUCTION_PERSONALITY_FILE)
SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION = load_static_content(SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_FILE)
SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_PERSONALITY = load_static_content(
SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_PERSONALITY_FILE
)
SUMMARIZATION_PROMPT = load_static_content(SUMMARIZATION_PROMPT_FILE)
PERSONALITY_EXT = load_static_content(PERSONALITY_EXT_FILE)
PERSONALITY_INT = load_static_content(PERSONALITY_INT_FILE)
# Other constants
FIRST_MESSAGE = "Hey"
USER_PREFERENCE_SUMMARY = True
DEBUG = False
API_TYPE = "together"
assert API_TYPE in ["together", "local", "debug"], "The API should be either 'together' or 'local'"
if API_TYPE == "together":
TOGETHER_CLIENT = Together(api_key=os.getenv("TOGETHER_API_KEY"))
def generate_username_pwd_list(data):
user_list = []
demo_list = []
for index, row in data.iterrows():
user_list.append((row["user"], str(row["pwd"])))
demo_list.append((row["demo"], str(row["pwd"])))
return user_list, demo_list
def load_username_and_pwd():
login(token=os.environ["HUGGINGFACE_HUB_TOKEN"])
dataset = load_dataset(os.getenv("USER_PWD_FILE"))
df = dataset["train"].to_pandas()
user_list, demo_list = generate_username_pwd_list(df)
return user_list, demo_list
def get_context_list(synthetic_data_path):
# Load data from the synthetic data file
with open(synthetic_data_path, "r") as f:
data = [json.loads(line) for line in f]
return data
def add_ticker_prefix(ticker_list, context_list):
res = []
for ticker, context in zip(ticker_list, context_list):
res.append(f"{ticker}: {context}")
return res
def build_raw_context_list(context_dict):
return context_dict["data"]
def build_context(context_dict):
return [build_context_element(context) for context in context_dict["data"]]
def build_context_element(context):
# [{topic: ex, data: {}}, {..}, ..]
# Extract information from the context
ticker = context["ticker"]
sector = context["sector"]
business_summary = context["business_summary"]
name = context["short_name"]
stock_price = context["price_data"]
earning = context["earning_summary"]
beta = context["beta"]
# Build the context string
stock_candidate = f"Stock Candidate: {name}"
stock_info = f"Stock Information: \nIndustry - {sector}, \nBeta (risk indicator) - {beta}, \nEarning Summary - {earning}\n, 2023 Monthly Stock Price - {stock_price}\n, Business Summary - {business_summary}"
context_list = [stock_candidate, stock_info]
# Combine all parts into a single string
return "\n".join(context_list)
def get_user_narrative_html(user_narrative):
return USER_NARRATIVE.replace("{user_narrative}", user_narrative).replace("\n", "
")
def get_user_narrative_from_raw(raw_narrative):
return get_user_narrative_html(markdown.markdown(raw_narrative.replace("\n", "
")))
def get_task_instruction_for_user(context):
ticker_name = context["short_name"]
user_narrative = context["user_narrative"]
user_narrative = user_narrative.replace("\n", "
")
html_user_narrative = markdown.markdown(user_narrative)
general_instruction = GENERAL_INSTRUCTION
round_instruction = f"""
Round Info
Stock
This Round's Stock:
{ticker_name}
User Narrative
{html_user_narrative}
"""
return general_instruction, round_instruction
def display_system_instruction_with_html(
system_instruction,
):
html_system_instruction = f"""
{system_instruction}
"""
return html_system_instruction
def log_action(user_id, tab_name, action, details):
"""
Log actions for each tab (stock).
"""
log_file_dir = os.path.join(LOG_DIR, f"{user_id}")
if os.path.exists(log_file_dir) is False:
os.makedirs(log_file_dir)
log_file = os.path.join(log_file_dir, f"{tab_name}.txt")
with open(log_file, "a") as f:
f.write(f"Action: {action} | Details: {details}\n")
def add_user_profile_to_system_instruction(
user_id, system_instruction, user_preference_elicitation_data, summary, terminator
):
exp_id = int(user_id.split("_")[-3])
# exp_id = 1 => No personalization
if exp_id == 1:
return system_instruction
if summary:
if user_preference_elicitation_data["summary_history"] == "":
# Format prompt
summarization_prompt = SUMMARIZATION_PROMPT + "\nPrevious Conversations: {}".format(
user_preference_elicitation_data["history"]
)
summarization_instruction = [{"role": "system", "content": summarization_prompt}]
if API_TYPE == "local":
summ, _ = generate_response_local_api(summarization_instruction, terminator, 512, API_URL)
elif API_TYPE == "together":
summ, _ = generate_response_together_api(summarization_instruction, 512, TOGETHER_CLIENT)
else:
summ, _ = generate_response_debugging(summarization_instruction)
user_preference_elicitation_data["summary_history"] = summ
# log_action(user_id, "Prompt", "Preference Elicitation Summarization", summ)
save_feedback(
user_id,
uuid_this_session,
"preference_elicitation_summarization",
{"summarization": summ},
feedback_file_summarization,
)
system_instruction += f"\nUser Profile collected in the previous conversations: {user_preference_elicitation_data['summary_history']}\n"
else:
system_instruction += (
f"\nUser Profile collected in the previous conversations: {user_preference_elicitation_data['history']}\n"
)
return system_instruction
def likert_evaluation(content):
return gr.Radio(
[1, 2, 3, 4, 5, 6, 7],
label=f"{content}",
show_label=True,
)
def reorder_list_based_on_user_in_narrative_id(user_in_narrative_id, target_list):
# user_in_narrative
random_order = {"0": [3, 2, 1, 0], "1": [1, 0, 3, 2], "2": [2, 1, 0, 3], "3": [1, 3, 2, 0], "4": [0, 3, 1, 2]}
user_in_narrative_random = random_order[user_in_narrative_id]
return [target_list[i] for i in user_in_narrative_random]
def create_demo():
global context_info_list, terminator
def tab_creation_exploration_stage(order, comp, context):
english_order = ["1", "2", "3", "4", "5"]
with gr.Tab(f"{english_order[order]}-1:Discuss"):
general_instruction = gr.HTML(label="General Instruction")
with gr.Row():
with gr.Column():
with gr.Row():
round_instruction = gr.HTML(label="Round Instruction")
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(height=600)
with gr.Row():
start_conversation = gr.Button(value="Start Conversation")
with gr.Row():
msg = gr.Textbox(scale=1, label="User Input")
with gr.Row():
msg_button = gr.Button(value="Send This Message to Advisor", interactive=False)
continue_button = gr.Button(value="Show More of the Advisor’s Answer", interactive=False)
with gr.Row():
clear = gr.ClearButton([msg, chatbot])
with gr.Tab(f"{english_order[order]}-2:Eval"):
with gr.Row():
gr.HTML(value=EVALUATION_INSTRUCTION)
with gr.Row():
likelihood = gr.Radio(
[1, 2, 3, 4, 5, 6, 7],
label="I am likely to purchase the stock (1 = Strongly Disagree, 7 = Strongly Agree)",
show_label=True,
)
reason = gr.Textbox(
scale=1,
label="Reason for Your Choice (Explain Your Reasoning & Highlight Useful Parts of Conversation)",
lines=5,
)
with gr.Row():
confidence = gr.Radio(
[1, 2, 3, 4, 5, 6, 7],
label="I am confident in my decision (1 = Strongly Disagree, 7 = Strongly Agree)",
show_label=True,
)
familiarity = gr.Radio(
[1, 2, 3, 4, 5, 6, 7],
label="What was your level of familiarity with the candidate stock before the interaction? (1 = Not Familiar, 7 = Very Familiar)",
)
with gr.Row():
textbox = gr.HTML()
evaluation_send_button = gr.Button(value="Send: Evaluation")
return {
"comp": comp,
"system_instruction_context": context,
"start_conversation": start_conversation,
"msg_button": msg_button,
"continue_button": continue_button,
"chatbot": chatbot,
"msg": msg,
"reason": reason,
"likelihood": likelihood,
"confidence": confidence,
"familiarity": familiarity,
"evaluation_send_button": evaluation_send_button,
"general_instruction": general_instruction,
"round_instruction": round_instruction,
"textbox": textbox,
}
def tab_creation_preference_stage():
with gr.Row():
gr.HTML(value=PREFERENCE_ELICITATION_TASK, label="Preference Elicitation Task")
with gr.Row():
with gr.Column():
user_narrative = gr.HTML(label="User Narrative")
with gr.Column():
with gr.Row():
elicitation_chatbot = gr.Chatbot(height=600)
with gr.Row():
start_conversation = gr.Button(value="Start Conversation")
with gr.Row():
msg = gr.Textbox(scale=1, label="User Input")
with gr.Row():
msg_button = gr.Button(value="Send This Message to Advisor", interactive=False)
continue_button = gr.Button(value="Show More of the Advisor’s Answer", interactive=False)
return {
"start_conversation": start_conversation,
"msg_button": msg_button,
"continue_button": continue_button,
"msg": msg,
"elicitation_chatbot": elicitation_chatbot,
"user_narrative": user_narrative,
}
def tab_final_evaluation():
with gr.Row():
gr.HTML(value=FINAL_EVALUATION)
with gr.Row():
gr.HTML(value="Rank the individual stocks below according to your desire to invest in each one.
")
with gr.Row():
ranking_first_comp = gr.Dropdown(choices=[1, 2, 3, 4])
ranking_second_comp = gr.Dropdown(choices=[1, 2, 3, 4])
ranking_third_comp = gr.Dropdown(choices=[1, 2, 3, 4])
ranking_fourth_comp = gr.Dropdown(choices=[1, 2, 3, 4])
with gr.Row():
gr.HTML(
value='Choose how strongly you agree with each statement about the advisor (1 for Strongly Disagree, 7 for Strongly Agree).
'
)
with gr.Row():
perceived_personalization = likert_evaluation("The advisor understands my needs")
emotional_trust = likert_evaluation("I feel content about relying on this advisor for my decisions")
with gr.Row():
trust_in_competence = likert_evaluation("The advisor has good knowledge of the stock")
intention_to_use = likert_evaluation(
"I am willing to use this advisor as an aid to help with my decision about which stock to purchase"
)
with gr.Row():
usefulness = likert_evaluation("The advisor gave me good suggestions")
overall_satisfaction = likert_evaluation("Overall, I am satisfied with the advisor")
with gr.Row():
providing_information = likert_evaluation("The advisor provides the financial knowledge needed")
with gr.Row():
textbox = gr.HTML()
submit_ranking = gr.Button(value="Submit Final Evaluation")
return {
"first": ranking_first_comp,
"second": ranking_second_comp,
"third": ranking_third_comp,
"fourth": ranking_fourth_comp,
"evaluators": {
"perceived_personalization": perceived_personalization,
"emotional_trust": emotional_trust,
"trust_in_competence": trust_in_competence,
"intention_to_use": intention_to_use,
"usefulness": usefulness,
"overall_satisfaction": overall_satisfaction,
"providing_information": providing_information,
},
"submit_ranking": submit_ranking,
"text_box": textbox,
}
def click_control_exploration_stage(
tabs, user_id, tab_session, user_preference_elicitation_session, system_description_without_context
):
(
comp,
system_instruction_context,
start_conversation,
msg_button,
continue_button,
chatbot,
msg,
reason,
likelihood,
confidence,
familiarity,
evaluation_send_button,
textbox,
) = (
tabs["comp"],
tabs["system_instruction_context"],
tabs["start_conversation"],
tabs["msg_button"],
tabs["continue_button"],
tabs["chatbot"],
tabs["msg"],
tabs["reason"],
tabs["likelihood"],
tabs["confidence"],
tabs["familiarity"],
tabs["evaluation_send_button"],
tabs["textbox"],
)
system_instruction = ""
start_conversation.click(
lambda user_id, tab_session, history, comp, user_preference_elicitation_session, system_description_without_context, system_instruction_context: respond_start_conversation(
user_id,
tab_session,
history,
system_instruction,
comp,
user_preference_elicitation_data=user_preference_elicitation_session,
system_description_without_context=system_description_without_context,
system_instruction_context=system_instruction_context,
),
[
user_id,
tab_session,
chatbot,
comp,
user_preference_elicitation_session,
system_description_without_context,
system_instruction_context,
],
[tab_session, chatbot, start_conversation, msg_button, continue_button],
)
msg_button.click(
lambda user_id, tab_session, message, history, comp, user_preference_elicitation_session, system_description_without_context, system_instruction_context: respond(
user_id,
tab_session,
message,
tab_session["history"],
system_instruction,
comp,
user_preference_elicitation_data=user_preference_elicitation_session,
system_description_without_context=system_description_without_context,
system_instruction_context=system_instruction_context,
),
[
user_id,
tab_session,
msg,
chatbot,
comp,
user_preference_elicitation_session,
system_description_without_context,
system_instruction_context,
],
[tab_session, msg, chatbot],
)
continue_button.click(
lambda user_id, tab_session, history, comp, user_preference_elicitation_session, system_description_without_context, system_instruction_context: respond_continue(
user_id,
tab_session,
tab_session["history"],
system_instruction,
comp,
user_preference_elicitation_data=user_preference_elicitation_session,
system_description_without_context=system_description_without_context,
system_instruction_context=system_instruction_context,
),
[
user_id,
tab_session,
chatbot,
comp,
user_preference_elicitation_session,
system_description_without_context,
system_instruction_context,
],
[tab_session, chatbot],
)
evaluation_send_button.click(
lambda user_id, comp, tab_session, reason, likelihood, confidence, familiarity, evaluation_send_button, textbox: respond_evaluation(
user_id,
tab_session,
{
"reason": reason,
"likelihood": likelihood,
"confidence": confidence,
"familiarity": familiarity,
},
comp,
evaluation_send_button,
textbox,
),
[
user_id,
comp,
tab_session,
reason,
likelihood,
confidence,
familiarity,
evaluation_send_button,
textbox,
],
[tab_session, reason, likelihood, confidence, familiarity, evaluation_send_button, textbox],
)
def click_control_preference_stage(
tabs, user_id, user_preference_elicitation_session, system_description_user_elicitation
):
(
start_conversation,
msg_button,
continue_button,
elicitation_chatbot,
msg,
) = (
tabs["start_conversation"],
tabs["msg_button"],
tabs["continue_button"],
tabs["elicitation_chatbot"],
tabs["msg"],
)
# nonlocal user_id
start_conversation.click(
lambda user_id, user_preference_elicitation_data, history, system_description_user_elicitation: respond_start_conversation(
user_id,
user_preference_elicitation_data,
history,
system_description_user_elicitation,
user_elicitation=True,
),
[user_id, user_preference_elicitation_session, elicitation_chatbot, system_description_user_elicitation],
[user_preference_elicitation_session, elicitation_chatbot, start_conversation, msg_button, continue_button],
)
msg_button.click(
lambda user_id, tab_data, message, history, system_description_user_elicitation: respond(
user_id,
tab_data,
message,
tab_data["history"],
system_description_user_elicitation,
user_elicitation=True,
),
[
user_id,
user_preference_elicitation_session,
msg,
elicitation_chatbot,
system_description_user_elicitation,
],
[user_preference_elicitation_session, msg, elicitation_chatbot],
)
continue_button.click(
lambda user_id, tab_data, history, system_description_user_elicitation: respond_continue(
user_id,
tab_data,
tab_data["history"],
system_description_user_elicitation,
user_elicitation=True,
),
[user_id, user_preference_elicitation_session, elicitation_chatbot, system_description_user_elicitation],
[user_preference_elicitation_session, elicitation_chatbot],
)
def click_control_final_evaluation(tabs, user_id, first_comp, second_comp, third_comp, fourth_comp, evaluators):
(
ranking_first_comp,
ranking_second_comp,
ranking_third_comp,
ranking_fourth_comp,
) = (
tabs["first"],
tabs["second"],
tabs["third"],
tabs["fourth"],
)
(
perceived_personalization,
emotional_trust,
trust_in_competence,
intention_to_use,
usefulness,
overall_satisfaction,
providing_information,
) = (
evaluators["perceived_personalization"],
evaluators["emotional_trust"],
evaluators["trust_in_competence"],
evaluators["intention_to_use"],
evaluators["usefulness"],
evaluators["overall_satisfaction"],
evaluators["providing_information"],
)
result_textbox = tabs["text_box"]
submit_ranking = tabs["submit_ranking"]
submit_ranking.click(
lambda user_id, first_comp, ranking_first_comp, second_comp, ranking_second_comp, third_comp, ranking_third_comp, fourth_comp, ranking_fourth_comp, perceived_personalization, emotional_trust, trust_in_competence, intention_to_use, usefulness, overall_satisfaction, providing_information, submit_ranking: respond_final_ranking(
user_id,
first_comp,
ranking_first_comp,
second_comp,
ranking_second_comp,
third_comp,
ranking_third_comp,
fourth_comp,
ranking_fourth_comp,
perceived_personalization,
emotional_trust,
trust_in_competence,
intention_to_use,
usefulness,
overall_satisfaction,
providing_information,
submit_ranking,
),
# Input components (names and rankings)
[
user_id,
first_comp,
ranking_first_comp,
second_comp,
ranking_second_comp,
third_comp,
ranking_third_comp,
fourth_comp,
ranking_fourth_comp,
perceived_personalization,
emotional_trust,
trust_in_competence,
intention_to_use,
usefulness,
overall_satisfaction,
providing_information,
submit_ranking,
],
# Output component(s) where you want the result to appear, e.g., result_textbox
[result_textbox, submit_ranking],
)
def respond(
user_id,
tab_data,
message,
history,
system_instruction,
tab_name=None,
user_elicitation=False,
user_preference_elicitation_data=None,
system_description_without_context=None,
system_instruction_context=None,
):
"""
Return:
msg
chat_history
retrieved_passage
rewritten_query
"""
assert (
tab_name is not None or user_elicitation is True
), "Tab name is required for the start of the conversation unless it is not preference elicitation."
# Add user profile to system instruction
if system_description_without_context is not None and system_instruction_context is not None:
system_instruction = system_description_without_context + "\n" + system_instruction_context
if not user_elicitation:
system_instruction = add_user_profile_to_system_instruction(
user_id,
system_instruction,
user_preference_elicitation_data,
summary=USER_PREFERENCE_SUMMARY,
terminator=terminator,
)
# From string to list [{"role":"user", "content": message}, ...]
history = gradio_to_huggingface_message(history)
# We can implement context window here as we need all the system interaction. We can cut some of the early interactions if needed.
history = conversation_window(history, CONV_WINDOW)
# Add system instruction to the history
history = format_context(system_instruction, history)
# Add user message to the history
history_with_user_utterance = format_user_message(message, history)
# Call API instead of locally handle it
if API_TYPE == "local":
outputs_text, history = generate_response_local_api(history_with_user_utterance, terminator, 128, API_URL)
elif API_TYPE == "together":
outputs_text, history = generate_response_together_api(history_with_user_utterance, 128, TOGETHER_CLIENT)
else:
outputs_text, history = generate_response_debugging(history_with_user_utterance)
# exclude system interaction and store the others in the history
history = huggingface_to_gradio_message(history)
if tab_name is not None:
# Log the user message and response
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": tab_name, "role": "user", "content": message},
feedback_file_interaction,
)
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": tab_name, "role": "assistant", "content": outputs_text},
feedback_file_interaction,
)
# log_action(user_id, tab_name, "User Message", message)
# log_action(user_id, tab_name, "Response", outputs_text)
# Store the updated history for this tab
tab_data["history"] = history
if user_elicitation:
save_feedback(
user_id,
uuid_this_session,
"Interaction",
{"type": "user_elicitation", "role": "user", "content": message},
feedback_file_interaction,
)
save_feedback(
user_id,
uuid_this_session,
"Interaction",
{"type": "user_elicitation", "role": "assistant", "content": outputs_text},
feedback_file_interaction,
)
# log_action(user_id, "User_Elicitation", "User Message", message)
# log_action(user_id, "User_Elicitation", "Response", outputs_text)
tab_data["history"] = history
return tab_data, "", history
def respond_start_conversation(
user_id,
tab_data,
history,
system_instruction,
tab_name=None,
user_elicitation=False,
user_preference_elicitation_data=None,
system_description_without_context=None,
system_instruction_context=None,
):
assert (
tab_name is not None or user_elicitation is True
), "Tab name is required for the start of the conversation unless it is not preference elicitation."
if system_description_without_context is not None and system_instruction_context is not None:
system_instruction = system_description_without_context + "\n" + system_instruction_context
if not user_elicitation:
system_instruction = add_user_profile_to_system_instruction(
user_id,
system_instruction,
user_preference_elicitation_data,
summary=USER_PREFERENCE_SUMMARY,
terminator=terminator,
)
history = gradio_to_huggingface_message(history)
history = format_context(system_instruction, history)
first_message = FIRST_MESSAGE
history_with_user_utterance = format_user_message(first_message, history)
max_length = 128 if user_elicitation else 256
if API_TYPE == "local":
outputs_text, history = generate_response_local_api(
history_with_user_utterance, terminator, max_length, API_URL
)
elif API_TYPE == "together":
outputs_text, history = generate_response_together_api(
history_with_user_utterance, max_length, TOGETHER_CLIENT
)
else:
outputs_text, history = generate_response_debugging(history_with_user_utterance)
# Format
history = huggingface_to_gradio_message(history)
if tab_name is not None:
# Log the user message and response
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": tab_name, "role": "user", "content": first_message},
feedback_file_interaction,
)
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": tab_name, "role": "assistant", "content": outputs_text},
feedback_file_interaction,
)
# log_action(user_id, tab_name, "User Message", first_message)
# log_action(user_id, tab_name, "Response", outputs_text)
# Store the updated history for this tab
tab_data["history"] = history
if user_elicitation:
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": "user_elicitation", "role": "user", "content": first_message},
feedback_file_interaction,
)
save_feedback(
user_id,
uuid_this_session,
"Interaction",
{"type": "user_elicitation", "role": "assistant", "content": outputs_text},
feedback_file_interaction,
)
tab_data["history"] = history
return (
tab_data,
history,
gr.Button(value="Start Conversation", interactive=False),
gr.Button(value="Send This Message to Advisor", interactive=True),
gr.Button(value="Show More of the Advisor’s Answer", interactive=True),
)
def respond_continue(
user_id,
tab_data,
history,
system_instruction,
tab_name=None,
user_elicitation=False,
user_preference_elicitation_data=None,
system_description_without_context=None,
system_instruction_context=None,
):
assert (
tab_name is not None or user_elicitation is True
), "Tab name is required for the start of the conversation."
# Add user profile to system instruction
if system_description_without_context is not None and system_instruction_context is not None:
system_instruction = system_description_without_context + "\n" + system_instruction_context
if not user_elicitation:
system_instruction = add_user_profile_to_system_instruction(
user_id,
system_instruction,
user_preference_elicitation_data,
summary=USER_PREFERENCE_SUMMARY,
terminator=terminator,
)
message = "continue"
history = gradio_to_huggingface_message(history)
history = conversation_window(history, CONV_WINDOW)
history = format_context(system_instruction, history)
history_with_user_utterance = format_user_message(message, history)
if API_TYPE == "local":
outputs_text, history = generate_response_local_api(history_with_user_utterance, terminator, 128, API_URL)
elif API_TYPE == "together":
outputs_text, history = generate_response_together_api(history_with_user_utterance, 128, TOGETHER_CLIENT)
else:
outputs_text, history = generate_response_debugging(history_with_user_utterance)
history = huggingface_to_gradio_message(history)
if tab_name is not None:
save_feedback(
user_id,
uuid_this_session,
"interaction",
{
"type": tab_name,
"role": "user",
"content": message,
},
feedback_file_interaction,
)
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": tab_name, "role": "assistant", "content": outputs_text},
feedback_file_interaction,
)
# Update history for this tab
tab_data["history"] = history
if user_elicitation:
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": "user_elicitation", "role": "user", "content": message},
feedback_file_interaction,
)
save_feedback(
user_id,
uuid_this_session,
"interaction",
{"type": "user_elicitation", "role": "assistant", "content": outputs_text},
feedback_file_interaction,
)
tab_data["history"] = history
return tab_data, history
def respond_evaluation(user_id, tab_data, evals, tab_name, evaluation_send_button, textbox):
# dropdown, readon_button, multi-evaluator
if evals["likelihood"] is None or evals["confidence"] is None or evals["familiarity"] is None:
return (
tab_data,
evals["reason"],
evals["likelihood"],
evals["confidence"],
evals["familiarity"],
evaluation_send_button,
"""
Please make sure that you answer all the questions.
""",
)
else:
save_feedback(
user_id,
uuid_this_session,
"round_evaluation",
{**evals, "company": tab_name},
feedback_file_round_evaluation,
)
# log_action(user_id, tab_name, "Round Evaluation", "Following")
# for key, value in evals.items():
# log_action(user_id, tab_name, key, value)
# Store the reason for this tab
tab_data["multi_evaluator"] = evals
evaluation_send_button = gr.Button(value="Evaluation receirved", interactive=False)
return (
tab_data,
evals["reason"],
evals["likelihood"],
evals["confidence"],
evals["familiarity"],
evaluation_send_button,
"""
Thank you for submitting your evaluation. You may proceed to the next tab.
""",
)
def respond_final_ranking(
user_id,
first_comp,
ranking_first_comp,
second_comp,
ranking_second_comp,
third_comp,
ranking_third_comp,
fourth_comp,
ranking_fourth_comp,
perceived_personalization,
emotional_trust,
trust_in_competence,
intention_to_use,
usefulness,
overall_satisfaction,
providing_information,
submit_ranking,
):
# make sure that they are not the same
ranking_list = [
ranking_first_comp,
ranking_second_comp,
ranking_third_comp,
ranking_fourth_comp,
]
if len(set(ranking_list)) != len(ranking_list):
return (
"""
Please make sure that you are not ranking the same stock multiple times.
""",
submit_ranking,
)
if any(
var is None
for var in [
perceived_personalization,
emotional_trust,
trust_in_competence,
intention_to_use,
usefulness,
overall_satisfaction,
providing_information,
]
):
return (
"""
Please make sure that you answer all the statements.
""",
submit_ranking,
)
else:
save_feedback(
user_id,
uuid_this_session,
"final_ranking",
{
"comp_order": [first_comp, second_comp, third_comp, fourth_comp],
"ranking": ranking_list,
},
feedback_file_final_ranking,
)
save_feedback(
user_id,
uuid_this_session,
"final_ranking_survey",
{
"perceived_personalization": perceived_personalization,
"emotional_trust": emotional_trust,
"trust_in_competence": trust_in_competence,
"intention_to_use": intention_to_use,
"usefulness": usefulness,
"overall_satisfaction": overall_satisfaction,
"providing_information": providing_information,
},
feedback_file_final_survey,
)
submit_ranking = gr.Button(value="Final evaluaiotn received", interactive=False)
return (
"""
Thank you for participating in the experiment. This concludes the session. You may now close the tab.
""",
submit_ranking,
)
def get_context(index, raw_context_list, stock_context_list):
comp = raw_context_list[index]["short_name"]
context = stock_context_list[index]
general_instruction, round_instruction = get_task_instruction_for_user(raw_context_list[index])
return comp, context, general_instruction, round_instruction
def set_user_id(request: gr.Request):
user_id = request.username
user_in_narrative_id = user_id.split("_")[-1]
narrative_id = user_id.split("_")[-2]
experiment_id = user_id.split("_")[-3]
return user_id, user_in_narrative_id, narrative_id, experiment_id
def get_inst_without_context(experiment_id):
# experiment_id = 1 => personalization
# experiment_id = 2 => no personalization
# experiment_id == 3 => ext personality
# experiment_id == 4 => int personality
if experiment_id == "0":
return SYSTEM_INSTRUCTION_PERSONALIZATION
elif experiment_id == "1":
return SYSTEM_INSTRUCTION_NON_PERSONALIZATION
elif experiment_id == "2":
return SYSTEM_INSTRUCTION_PERSONALITY.format(personality=PERSONALITY_EXT)
elif experiment_id == "3":
return SYSTEM_INSTRUCTION_PERSONALITY.format(personality=PERSONALITY_INT)
def get_user_preference_elicitation(experiment_id):
if experiment_id == "0" or experiment_id == "1":
return SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION
elif experiment_id == "2":
return SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_PERSONALITY.format(personality=PERSONALITY_EXT)
elif experiment_id == "3":
return SYSTEM_INSTRUCTION_PREFERENCE_ELICITATION_PERSONALITY.format(personality=PERSONALITY_INT)
def get_stock_related_context(narrative_id, user_in_narrative_id):
raw_context_list = build_raw_context_list(context_info_list[int(narrative_id)])
stock_context_list = build_context(context_info_list[int(narrative_id)])
raw_context_list = reorder_list_based_on_user_in_narrative_id(user_in_narrative_id, raw_context_list)
stock_context_list = reorder_list_based_on_user_in_narrative_id(user_in_narrative_id, stock_context_list)
return raw_context_list, stock_context_list
def set_initial_values(request: gr.Request):
# Set user specific information (Session State)
user_id, user_in_narrative_id, narrative_id, experiment_id = set_user_id(request)
# System instruction without prompt
system_description_without_context = get_inst_without_context(experiment_id)
# user_preference_elicitation
system_description_user_elicitation = get_user_preference_elicitation(experiment_id)
# Stock related context
raw_context_list, stock_context_list = get_stock_related_context(narrative_id, user_in_narrative_id)
# User Narrative
user_narrative = get_user_narrative_from_raw(raw_context_list[0]["user_narrative"])
# Tab Context
first_comp, first_context, first_general_instruction, first_round_instruction = get_context(
0, raw_context_list, stock_context_list
)
second_comp, second_context, second_general_instruction, second_round_instruction = get_context(
1, raw_context_list, stock_context_list
)
third_comp, third_context, third_general_instruction, third_round_instruction = get_context(
2, raw_context_list, stock_context_list
)
fourth_comp, fourth_context, fourth_general_instruction, fourth_round_instruction = get_context(
3, raw_context_list, stock_context_list
)
# Final Evaluation
ranking_first_comp = gr.Dropdown(choices=[1, 2, 3, 4], label=first_comp)
ranking_second_comp = gr.Dropdown(choices=[1, 2, 3, 4], label=second_comp)
ranking_third_comp = gr.Dropdown(choices=[1, 2, 3, 4], label=third_comp)
ranking_fourth_comp = gr.Dropdown(choices=[1, 2, 3, 4], label=fourth_comp)
return (
user_id,
user_in_narrative_id,
narrative_id,
experiment_id,
system_description_without_context,
system_description_user_elicitation,
raw_context_list,
stock_context_list,
user_narrative,
first_comp,
first_context,
first_general_instruction,
first_round_instruction,
second_comp,
second_context,
second_general_instruction,
second_round_instruction,
third_comp,
third_context,
third_general_instruction,
third_round_instruction,
fourth_comp,
fourth_context,
fourth_general_instruction,
fourth_round_instruction,
ranking_first_comp,
ranking_second_comp,
ranking_third_comp,
ranking_fourth_comp,
)
with gr.Blocks(title="RAG Chatbot Q&A", theme="Soft") as demo:
# Set user specific information (Session State)
user_id = gr.State()
user_in_narrative_id = gr.State()
narrative_id = gr.State()
experiment_id = gr.State()
system_description_without_context = gr.State()
system_description_user_elicitation = gr.State()
# Context data
raw_context_list = gr.State()
stock_context_list = gr.State()
first_comp = gr.State()
first_context = gr.State()
second_comp = gr.State()
second_context = gr.State()
third_comp = gr.State()
third_context = gr.State()
fourth_comp = gr.State()
fourth_context = gr.State()
# Tab data
if DEBUG:
user_preference_elicitation_session = gr.State(
value={
"history": "",
"summary_history": """User Profile collected in the previous conversations: Based on our previous conversation, here's a summary of your investment preferences:
# 1. **Preferred Industries:** You're interested in investing in the healthcare sector, without a specific preference for sub-industries such as pharmaceuticals, medical devices, biotechnology, or healthcare services.
# 2. **Value vs. Growth Stocks:** You prefer growth stocks, which have the potential for high returns but may be riskier.
# 3. **Dividend vs. Non-Dividend Stocks:** You're open to both dividend and non-dividend growth stocks, focusing on reinvesting profits for future growth.
# 4. **Cyclical vs. Non-Cyclical Stocks:** You're interested in cyclical stocks, which are sensitive to economic fluctuations and tend to perform well during economic expansions.""",
}
)
else:
user_preference_elicitation_session = gr.State(value={"history": "", "summary_history": ""})
first_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""})
second_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""})
third_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""})
fourth_comp_session = gr.State(value={"history": [], "selection": "", "reason": ""})
# EXperiment Instruction
with gr.Tab("Experiment Instruction") as instruction_tab:
gr.HTML(value=INSTRUCTION_PAGE, label="Experiment Instruction")
# User Preference Elicitation Tab
with gr.Tab("Preference Elicitation Stage") as preference_elicitation_tab:
user_preference_elicitation_tab = tab_creation_preference_stage()
user_narrative = user_preference_elicitation_tab["user_narrative"]
click_control_preference_stage(
user_preference_elicitation_tab,
user_id,
user_preference_elicitation_session,
system_description_user_elicitation,
)
with gr.Tab("Financial Decision Stage") as financial_decision:
# Experiment Tag
first_tab = tab_creation_exploration_stage(0, first_comp, first_context)
first_general_instruction, first_round_instruction = (
first_tab["general_instruction"],
first_tab["round_instruction"],
)
click_control_exploration_stage(
first_tab,
user_id,
first_comp_session,
user_preference_elicitation_session,
system_description_without_context,
)
second_tab = tab_creation_exploration_stage(1, second_comp, second_context)
second_general_instruction, second_round_instruction = (
second_tab["general_instruction"],
second_tab["round_instruction"],
)
click_control_exploration_stage(
second_tab,
user_id,
second_comp_session,
user_preference_elicitation_session,
system_description_without_context,
)
third_tab = tab_creation_exploration_stage(2, third_comp, third_context)
third_general_instruction, third_round_instruction = (
third_tab["general_instruction"],
third_tab["round_instruction"],
)
click_control_exploration_stage(
third_tab,
user_id,
third_comp_session,
user_preference_elicitation_session,
system_description_without_context,
)
fourth_tab = tab_creation_exploration_stage(3, fourth_comp, fourth_context)
fourth_general_instruction, fourth_round_instruction = (
fourth_tab["general_instruction"],
fourth_tab["round_instruction"],
)
click_control_exploration_stage(
fourth_tab,
user_id,
fourth_comp_session,
user_preference_elicitation_session,
system_description_without_context,
)
with gr.Tab("Final Evaluation Stage") as final_evaluation:
final_evaluation_tab = tab_final_evaluation()
(
ranking_first_comp,
ranking_second_comp,
ranking_third_comp,
ranking_fourth_comp,
evaluators,
) = (
final_evaluation_tab["first"],
final_evaluation_tab["second"],
final_evaluation_tab["third"],
final_evaluation_tab["fourth"],
final_evaluation_tab["evaluators"],
)
click_control_final_evaluation(
final_evaluation_tab, user_id, first_comp, second_comp, third_comp, fourth_comp, evaluators
)
demo.load(
set_initial_values,
inputs=None,
outputs=[
user_id,
user_in_narrative_id,
narrative_id,
experiment_id,
system_description_without_context,
system_description_user_elicitation,
raw_context_list,
stock_context_list,
user_narrative,
first_comp,
first_context,
first_general_instruction,
first_round_instruction,
second_comp,
second_context,
second_general_instruction,
second_round_instruction,
third_comp,
third_context,
third_general_instruction,
third_round_instruction,
fourth_comp,
fourth_context,
fourth_general_instruction,
fourth_round_instruction,
ranking_first_comp,
ranking_second_comp,
ranking_third_comp,
ranking_fourth_comp,
],
)
return demo
if __name__ == "__main__":
file_path = os.path.join(ROOT_FILE, "./data/single_stock_data/experiment_processed_data.jsonl")
topics = [
"healthcare_growth_defensive",
"dividend_value_defensive",
"nondividend_value_cyclical",
]
context_info_list = get_context_list(file_path) # str to List of Dict
# system instruction consist of Task, Personality, and Context
"""
Personality
["extroverted", "introverted"]
["agreeable", "antagonistic"]
["conscientious", "unconscientious"]
["neurotic", "emotionally stable"]
["open to experience", "closed to experience"]]
"""
# Global variables
terminator = ["", "", "", "", "", ""]
demo = create_demo()
user_list, demo_list = load_username_and_pwd()
demo.launch(
share=False,
auth=user_list + demo_list,
)