from flask import Flask, request, render_template, redirect, url_for from transformers import AutoTokenizer, AutoModel import torch import os os.environ["TOKENIZERS_PARALLELISM"] = "false" app = Flask(__name__) # Dictionary to store programs and their courses programs = {} # Default model name current_model_name = 'sentence-transformers/all-mpnet-base-v2' # Function to load the tokenizer and model dynamically def load_model_and_tokenizer(model_name): try: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) return tokenizer, model, None except Exception as e: return None, None, str(e) # Load the initial model and tokenizer tokenizer, model, error = load_model_and_tokenizer(current_model_name) def mean_pooling(token_embeddings, mask): """Applies mean pooling to token embeddings, considering the mask.""" mask = mask.unsqueeze(-1).expand(token_embeddings.size()) sum_embeddings = torch.sum(token_embeddings * mask, dim=1) sum_mask = torch.clamp(mask.sum(dim=1), min=1e-9) # Avoid division by zero return sum_embeddings / sum_mask def compute_plo_embeddings(): """Computes embeddings for the predefined PLOs.""" tokens = tokenizer(plos, padding=True, truncation=True, return_tensors='pt') mask = tokens['attention_mask'] with torch.no_grad(): outputs = model(**tokens) return mean_pooling(outputs.last_hidden_state, mask) # Predefined Program Learning Outcomes (PLOs) plos = [ "Analyze a complex computing problem and apply principles of computing and other relevant disciplines to identify solutions.", "Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements.", "Communicate effectively in a variety of professional contexts.", "Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.", "Function effectively as a member or leader of a team engaged in activities appropriate to the program’s discipline.", "Support the delivery, use, and management of information systems within an information systems environment." ] # Compute PLO embeddings (once at startup) plo_embeddings = compute_plo_embeddings() def get_similarity(input_sentence): """Calculates the similarity between an input sentence and predefined PLOs.""" tokens = tokenizer(input_sentence, padding=True, truncation=True, return_tensors='pt') mask = tokens['attention_mask'] with torch.no_grad(): outputs = model(**tokens) input_embedding = mean_pooling(outputs.last_hidden_state, mask) similarities = torch.nn.functional.cosine_similarity(input_embedding, plo_embeddings) return similarities @app.route('/') def index(): """Home page displaying current programs and model status.""" return render_template('index.html', programs=programs, model_name=current_model_name) @app.route('/set_model', methods=['POST']) def set_model(): """Allows users to dynamically change the model.""" global tokenizer, model, plo_embeddings, current_model_name model_name = request.form['model_name'] tokenizer, model, error = load_model_and_tokenizer(model_name) if error: return render_template('index.html', programs=programs, message=f"Error loading model: {error}") # Update the global model name and recompute embeddings current_model_name = model_name plo_embeddings = compute_plo_embeddings() return redirect(url_for('index')) @app.route('/addprogram', methods=['GET', 'POST']) def add_program(): """Adds a new program.""" if request.method == 'POST': program_name = request.form['program_name'] if program_name not in programs: programs[program_name] = {} # Initialize an empty dictionary for courses return redirect(url_for('index')) return render_template('addprogram.html') @app.route('/addcourse', methods=['GET', 'POST']) def create_course(): """Creates a new course under a specific program.""" if request.method == 'POST': program_name = request.form['program'] course_name = request.form['course_name'] outcomes = request.form['course_outcomes'].split('\n') if program_name in programs: programs[program_name][course_name] = outcomes # Add course to the selected program return redirect(url_for('index')) return render_template('addcourse.html', programs=programs) @app.route('/match', methods=['POST']) def match_outcomes(): """Matches course outcomes with predefined PLOs.""" program_outcomes = request.form['program_outcomes'] print(program_outcomes) course_outcomes = request.form['course_outcomes'].split('\n') results = [] for co in course_outcomes: co = co.strip() if co: # Ensure the outcome is not empty similarities = get_similarity(co) top_matches_indices = similarities.topk(3).indices.tolist() results.append({ 'course_outcome': co, 'program_outcomes' : program_outcomes, 'best_matches': top_matches_indices }) return render_template('result.html', results=results) if __name__ == '__main__': app.run(debug=True)