gabrielclark3330
commited on
Commit
•
ede06bd
1
Parent(s):
7eeefc1
Expose both base and instruct models
Browse files
app.py
CHANGED
@@ -2,23 +2,36 @@ import os
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
-
from huggingface_hub import login
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
|
18 |
-
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(model.device)
|
19 |
-
|
20 |
-
# Generate response using specified parameters
|
21 |
-
outputs = model.generate(
|
22 |
input_ids=input_ids,
|
23 |
max_new_tokens=max_new_tokens,
|
24 |
do_sample=True,
|
@@ -30,25 +43,26 @@ def generate_response(input_text, max_new_tokens, temperature, top_k, top_p, rep
|
|
30 |
length_penalty=length_penalty,
|
31 |
num_return_sequences=1
|
32 |
)
|
33 |
-
response =
|
34 |
return response
|
35 |
|
36 |
-
#
|
37 |
demo = gr.Interface(
|
38 |
fn=generate_response,
|
39 |
inputs=[
|
40 |
-
gr.Textbox(lines=1, placeholder="Enter
|
41 |
gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens"),
|
42 |
gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature"),
|
43 |
gr.Slider(1, 100, step=1, value=50, label="Top K"),
|
44 |
gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P"),
|
45 |
gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty"),
|
46 |
gr.Slider(1, 10, step=1, value=5, label="Number of Beams"),
|
47 |
-
gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty")
|
|
|
48 |
],
|
49 |
outputs=gr.Textbox(label="Generated Response"),
|
50 |
-
title="Zamba2-7B Model",
|
51 |
-
description="
|
52 |
)
|
53 |
|
54 |
if __name__ == "__main__":
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
|
|
5 |
|
6 |
+
# Define models as None to delay loading
|
7 |
+
model, model_instruct = None, None
|
8 |
+
tokenizer, tokenizer_instruct = None, None
|
9 |
+
|
10 |
+
# Define the response function with lazy loading
|
11 |
+
def generate_response(input_text, max_new_tokens, temperature, top_k, top_p, repetition_penalty, num_beams, length_penalty, model_choice):
|
12 |
+
global model, model_instruct, tokenizer, tokenizer_instruct
|
13 |
+
|
14 |
+
# Lazy loading of the selected model
|
15 |
+
if model_choice == "Zamba2-7B":
|
16 |
+
if model is None: # Load only if not already loaded
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B")
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
"Zyphra/Zamba2-7B", device_map="cuda", torch_dtype=torch.bfloat16
|
20 |
+
)
|
21 |
+
selected_model = model
|
22 |
+
selected_tokenizer = tokenizer
|
23 |
+
else:
|
24 |
+
if model_instruct is None: # Load only if not already loaded
|
25 |
+
tokenizer_instruct = AutoTokenizer.from_pretrained("Zyphra/Zamba2-7B-instruct")
|
26 |
+
model_instruct = AutoModelForCausalLM.from_pretrained(
|
27 |
+
"Zyphra/Zamba2-7B-instruct", device_map="cuda", torch_dtype=torch.bfloat16
|
28 |
+
)
|
29 |
+
selected_model = model_instruct
|
30 |
+
selected_tokenizer = tokenizer_instruct
|
31 |
|
32 |
+
# Tokenize and generate response
|
33 |
+
input_ids = selected_tokenizer(input_text, return_tensors="pt").input_ids.to(selected_model.device)
|
34 |
+
outputs = selected_model.generate(
|
|
|
|
|
|
|
|
|
35 |
input_ids=input_ids,
|
36 |
max_new_tokens=max_new_tokens,
|
37 |
do_sample=True,
|
|
|
43 |
length_penalty=length_penalty,
|
44 |
num_return_sequences=1
|
45 |
)
|
46 |
+
response = selected_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
return response
|
48 |
|
49 |
+
# Gradio interface with model selection
|
50 |
demo = gr.Interface(
|
51 |
fn=generate_response,
|
52 |
inputs=[
|
53 |
+
gr.Textbox(lines=1, placeholder="Enter your input text...", label="Input Text"),
|
54 |
gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens"),
|
55 |
gr.Slider(0.1, 1.5, step=0.1, value=0.7, label="Temperature"),
|
56 |
gr.Slider(1, 100, step=1, value=50, label="Top K"),
|
57 |
gr.Slider(0.1, 1.0, step=0.1, value=0.9, label="Top P"),
|
58 |
gr.Slider(1.0, 2.0, step=0.1, value=1.2, label="Repetition Penalty"),
|
59 |
gr.Slider(1, 10, step=1, value=5, label="Number of Beams"),
|
60 |
+
gr.Slider(0.0, 2.0, step=0.1, value=1.0, label="Length Penalty"),
|
61 |
+
gr.Dropdown(["Zamba2-7B", "Zamba2-7B-instruct"], label="Model Choice")
|
62 |
],
|
63 |
outputs=gr.Textbox(label="Generated Response"),
|
64 |
+
title="Zamba2-7B Model Selector",
|
65 |
+
description="Choose a model and ask a question with customizable parameters."
|
66 |
)
|
67 |
|
68 |
if __name__ == "__main__":
|